Built with blockbuilder.org
xxxxxxxxxx
<meta charset="utf-8">
<style>
.axis--x path {
display: none;
}
.line {
fill: none;
stroke: steelblue;
stroke-width: 1.5px;
}
</style>
<svg width="960" height="500"></svg>
<script src="//d3js.org/d3.v4.min.js"></script>
<script>
var svg = d3.select("svg"),
margin = {top: 20, right: 80, bottom: 30, left: 50},
width = svg.attr("width") - margin.left - margin.right,
height = svg.attr("height") - margin.top - margin.bottom,
g = svg.append("g").attr("transform", "translate(" + margin.left + "," + margin.top + ")");
var parseTime = d3.timeParse("%Y%m%d");
var x = d3.scaleTime().range([0, width]),
y = d3.scaleLinear().range([height, 0]),
z = d3.scaleOrdinal(d3.schemeCategory10);
var line = d3.line()
.curve(d3.curveBasis)
.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.temperature); });
// 1. tranform each row of data as needed
// 1.1 d => a row of data turn => as object
// 1.2 columns => column names
// 1.3 _ is index of each row, ignored here
function type(d, _, columns) {
// 2. apply data to date format func
d.date = parseTime(d.date);
// 3 convert temperature from string type to numeric type
// 3.1 loop every column except the date column
// 3.2 assign each column name to variable c
// 3.3 extract each city's temperature value of a row using column name
// 3.4 + convert string number to numeric number
for (var i = 1, n = columns.length, c; i < n; ++i) d[c = columns[i]] = +d[c];
return d;
}
// 4. load data file and preprocess data
// 4.1 d3.tsv("data.tsv").row(type).get(function(error, data){ })
d3.tsv("data.tsv", type, function(error, data) {
// 4.2 the transformed data is stored inside variable data
// 4.3 data is array of objects, each row is an object
// 4.4 each object has 4 named values: date and 3 cities' temp
console.log(data);
// ignore it for now
if (error) throw error;
// 5. if var data organises dataset by rows, var cities organises dataset by columns
// 5.1 create an array with 3 city names
var cities = data.columns.slice(1)
// 5.2 loop each city name
.map(function(id) {
// 5.3 for each city name return an object: 2 named values
return {
// 5.4 id: city name
id: id,
// 5.5 values: array of objects created using every row of data
values: data.map(function(d) {
// 5.6 inside each object: 2 named values:
return {date: d.date, temperature: d[id]};
})
};
});
// test it
console.log(cities);
});
</script>
https://d3js.org/d3.v4.min.js