This line chart is constructed from a TSV file storing the daily average temperatures of New York, San Francisco and Austin over the last year. The chart employs conventional margins and a number of D3 features:
forked from mbostock's block: Multi-Series Line Chart
forked from EmbraceLife's block: 30. Multi-Series Line Chart
forked from EmbraceLife's block: 30. stock return chart
forked from EmbraceLife's block: 30. 3 stock return chart
forked from EmbraceLife's block: 30. 3 stock return chart
forked from EmbraceLife's block: 30. 3-stock-return-missing-data chart
xxxxxxxxxx
<meta charset="utf-8">
<style>
.axis--x path {
display: none;
}
.line {
fill: none;
stroke: steelblue;
stroke-width: 1.5px;
}
</style>
<svg width="960" height="500"></svg>
<script src="//d3js.org/d3.v4.min.js"></script>
<script>
var svg = d3.select("svg");
var
margin = {top: 20, right: 80, bottom: 30, left: 50},
width = svg.attr("width") - margin.left - margin.right,
height = svg.attr("height") - margin.top - margin.bottom;
var
g = svg.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
// ---------- step 1 above: create svg and g --------------------------
var parseTime = d3.timeParse("%Y%m%d");
var x = d3.scaleTime().range([0, width]),
y = d3.scaleLinear().range([height, 0]),
z = d3.scaleOrdinal(d3.schemeCategory10);
var line = d3.line()
.curve(d3.curveBasis)
.defined(function(d){return d})
.x(function(d) { if(d !== null) return x(d.date); })
.y(function(d) { if(d !== null) return y(d.return); });
// ------------ step 3.a above: define scale functions with their ranges ----------
function type(d, _, columns) {
d.date = parseTime(+d.date);
// i = 1 to skip date, c = columns[i] for +d[c]
for (var i = 1, n = columns.length, c; i < n; ++i) d[c = columns[i]] = +d[c];
return d;
}
d3.csv("data_filled.csv", type, function(error, data) {
if (error) throw error;
// console.log(data.columns);
// console.log(data);
// console.log(data[0].date);
var returns = data.columns.slice(1).map(function(id) {
return {
id: id,
values: data.map(function(d) {
if(d[id]+"" === "NaN") {
return null;
} else {
return {date: d.date, return: d[id]};
}
})
};
});
// console.log(returns);
// console.log(returns[0].values);
// ---------------- step 2 above: get row-data and column-data ready -------------
x.domain(d3.extent(returns[2].values, function(d) { return d.date; }));
// console.log(x.domain());
y.domain(
[d3.min(returns, function(r){return d3.min(r.values, function(p){ if(p !== null) return p.return;});}),
d3.max(returns, function(r){return d3.max(r.values, function(p){if(p !== null) return p.return;});})]
);
// console.log(y.domain());
z.domain(returns.map(function(c) { return c.id; }));
// ------------------ step 3.b above: set scale-func domain ----------------------
g.append("g")
.attr("class", "axis axis--x")
.attr("transform", "translate(0," + height + ")")
.call(d3.axisBottom(x));
g.append("g")
.attr("class", "axis axis--y")
.call(d3.axisLeft(y))
.append("text")
.attr("x",20)
.attr("y", 6)
.attr("dy", "0.71em")
.attr("text-anchor", "start")
.attr("fill", "#000")
.text("return, 1-base");
var rr = g.selectAll(".return")
.data(returns)
.enter().append("g")
.attr("class", ".return");
var c = rr.append("path")
.attr("class", "line")
.attr("d", function(d) { return line(d.values);})
.style("stroke", function(d){return z(d.id)} );
console.log(c);
rr.append("text")
.datum(function(d) { return {id: d.id, value: d.values[d.values.length - 4]}; })
.attr("transform", function(d) { return "translate(" + x(d.value.date) + "," + y(d.value.return) + ")"; })
.attr("x", 3)
.attr("dy", "0.35em")
.style("font", "10px sans-serif")
.text(function(d) { return d.id; });
// ---------- step 4 above: draw x-y-axis, lines, ... -----------------------------
});
</script>
https://d3js.org/d3.v4.min.js