/******************************************************************/ /* complex fast fourier transform and inverse from */ /* https://rosettacode.org/wiki/Fast_Fourier_transform#JavaScript */ /******************************************************************/ function icfft(amplitudes) { var N = amplitudes.length; var iN = 1 / N; //conjugate if imaginary part is not 0 for(var i = 0 ; i < N; ++i) if(amplitudes[i] instanceof Complex) amplitudes[i].im = -amplitudes[i].im; //apply fourier transform amplitudes = cfft(amplitudes) for(var i = 0 ; i < N; ++i) { //conjugate again amplitudes[i].im = -amplitudes[i].im; //scale amplitudes[i].re *= iN; amplitudes[i].im *= iN; } return amplitudes; } function cfft(amplitudes) { var N = amplitudes.length; if( N <= 1 ) return amplitudes; var hN = N / 2; var even = []; var odd = []; even.length = hN; odd.length = hN; for(var i = 0; i < hN; ++i) { even[i] = amplitudes[i*2]; odd[i] = amplitudes[i*2+1]; } even = cfft(even); odd = cfft(odd); var a = -2*Math.PI; for(var k = 0; k < hN; ++k) { if(!(even[k] instanceof Complex)) even[k] = new Complex(even[k], 0); if(!(odd[k] instanceof Complex)) odd[k] = new Complex(odd[k], 0); var p = k/N; var t = new Complex(0, a * p); t.cexp(t).mul(odd[k], t); amplitudes[k] = even[k].add(t, odd[k]); amplitudes[k + hN] = even[k].sub(t, even[k]); } return amplitudes; } /* basic complex number arithmetic from http://rosettacode.org/wiki/Fast_Fourier_transform#Scala */ function Complex(re, im) { this.re = re; this.im = im || 0.0; } Complex.prototype.add = function(other, dst) { dst.re = this.re + other.re; dst.im = this.im + other.im; return dst; } Complex.prototype.sub = function(other, dst) { dst.re = this.re - other.re; dst.im = this.im - other.im; return dst; } Complex.prototype.mul = function(other, dst) { //cache re in case dst === this var r = this.re * other.re - this.im * other.im; dst.im = this.re * other.im + this.im * other.re; dst.re = r; return dst; } Complex.prototype.cexp = function(dst) { var er = Math.exp(this.re); dst.re = er * Math.cos(this.im); dst.im = er * Math.sin(this.im); return dst; } Complex.prototype.log = function() { /* although 'It's just a matter of separating out the real and imaginary parts of jw.' is not a helpful quote the actual formula I found here and the rest was just fiddling / testing and comparing with correct results. http://cboard.cprogramming.com/c-programming/89116-how-implement-complex-exponential-functions-c.html#post637921 */ if( !this.re ) console.log(this.im.toString()+'j'); else if( this.im < 0 ) console.log(this.re.toString()+this.im.toString()+'j'); else console.log(this.re.toString()+'+'+this.im.toString()+'j'); }