The scatterplot matrix visualizations pairwise correlations for multi-dimensional data; each cell in the matrix is a scatterplot. This example uses Anderson's data of iris flowers on the Gaspé Peninsula. Scatterplot matrix design invented by J. A. Hartigan; see also R and GGobi. Data on Iris flowers collected by Edgar Anderson and published by Ronald Fisher.
See also this simpler static version without brushing.
forked from mbostock's block: Scatterplot Matrix Brushing
xxxxxxxxxx
<meta charset="utf-8">
<body>
<script src="//d3js.org/d3.v4.js"></script>
<script>
var width = 960,
size = 100,
padding = 20;
var x = d3.scaleLinear()
.range([padding / 2, size - padding / 2])
.domain([0,10]);
var y = d3.scaleLinear()
.range([size - padding / 2, padding / 2])
.domain([0,10]);
var color = d3.scaleOrdinal(d3.schemeCategory20);
//d3.csv("flowers.csv", function(error, data) {
d3.json("data.json", function(error, data) {
if (error) throw error;
var domainByTrait = {},
traits = d3.keys(data[0]).filter(function(d) { return d !== "name"; }),
n = traits.length;
traits.forEach(function(trait) {
domainByTrait[trait] = d3.extent(data, function(d) { return d[trait]; });
});
var value=size*n;
var xAxis = d3.axisBottom(x)
.tickSize(value);
var yAxis = d3.axisLeft(y).tickSize(-size * n);
var svg = d3.select("body").append("svg")
.attr("width", size * n + padding)
.attr("height", size * n + padding)
.append("g")
.attr("transform", "translate(" + padding + "," + padding / 2 + ")");
svg.selectAll(".x.axis")
.data(traits)
.enter().append("g")
.attr("class", "x axis")
.attr("transform", function(d, i) { return "translate(" + (n - i - 1) * size + ",0)"; })
.each(function(d) { x.domain([0,10]); d3.select(this).call(xAxis); });
svg.selectAll(".y.axis")
.data(traits)
.enter().append("g")
.attr("class", "y axis")
.attr("transform", function(d, i) { return "translate(0," + i * size + ")"; })
.each(function(d) { y.domain([0,10]); d3.select(this).call(yAxis); });
var cell = svg.selectAll(".cell")
.data(cross(traits, traits))
.enter().append("g")
.attr("class", "cell")
.attr("transform", function(d) { return "translate(" + (n - d.i - 1) * size + "," + d.j * size + ")"; })
.each(plot);
// Titles for the diagonal.
cell.filter(function(d) { return d.i === d.j; }).append("text")
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(function(d) { return d.x; });
svg.selectAll(".axis line")
.attr("stroke","#ddd");
svg.selectAll(".axis path")
.attr("display","none");
function plot(p) {
console.log(this);
var cell = d3.select(this);
cell.append("rect")
.attr("class", "frame")
.attr("x", padding / 2)
.attr("y", padding / 2)
.attr("width", size - padding)
.attr("height", size - padding)
.attr("fill","none")
.attr("stroke","#aaa");
cell.selectAll("circle")
.data(data)
.enter().append("circle")
.attr("cx", function(d) { return x(d[p.x]); })
.attr("cy", function(d) { return y(d[p.y]); })
.attr("r", 4)
.style("fill", function(d) { return color(d.name); });
}
});
function cross(a, b) {
var c = [], n = a.length, m = b.length, i, j;
for (i = -1; ++i < n;) for (j = -1; ++j < m;) c.push({x: a[i], i: i, y: b[j], j: j});
return c;
}
</script>
https://d3js.org/d3.v4.js