This simple force-directed graph shows character co-occurence in Les Misérables. A physical simulation of charged particles and springs places related characters in closer proximity, while unrelated characters are farther apart. Layout algorithm inspired by Tim Dwyer and Thomas Jakobsen. Data based on character coappearence in Victor Hugo's Les Misérables, compiled by Donald Knuth.
Compare this display to a force layout with curved links, a force layout with fisheye distortion and a matrix diagram.
forked from mbostock's block: Force-Directed Graph
xxxxxxxxxx
<meta charset="utf-8">
<style>
.links line {
stroke: #999;
stroke-opacity: 0.6;
}
.nodes circle {
stroke: #fff;
stroke-width: 1.5px;
}
</style>
<svg width="960" height="600"></svg>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script>
var svg = d3.select("svg"),
width = +svg.attr("width"),
height = +svg.attr("height"),
radius = Math.min(width, height) / 2,
g = svg.append("g").attr("transform", "translate(" + width / 2 + "," + height / 2 + ")");
var color = d3.scaleOrdinal(d3.schemeCategory20);
var simulation = d3.forceSimulation()
.force("link", d3.forceLink().id(function(d) { return d.id; }))
.force("charge", d3.forceManyBody())
.force("center", d3.forceCenter(width / 2, height / 2));
var pie = d3.pie()
.sort(null)
.value(function(d) { return d.group; });
var path = d3.arc()
.outerRadius(radius - 10)
.innerRadius(0);
d3.json("miserables.json", function(error, graph) {
if (error) throw error;
var link = svg.append("g")
.attr("class", "links")
.selectAll("line")
.data(graph.links)
.enter().append("line")
.attr("stroke-width", function(d) { return Math.sqrt(d.value); });
var node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
.data(graph.nodes)
.enter().append("circle")
.attr("r", 5)
.attr("fill", function(d) { return color(d.group); })
.call(d3.drag()
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended));
node.append("title")
.text(function(d) { return d.id; });
simulation
.nodes(graph.nodes)
.on("tick", ticked);
simulation.force("link")
.links(graph.links);
var nodeByName = d3.nest()
.key(function(d) { return d.group; })
.rollup(function(v) { return v.length; })
.entries(graph.nodes);
var arc = g.selectAll(".arc")
.data(pie(graph.nodes))
.enter().append("g")
.attr("class", "arc");
arc.append("path")
.attr("d", path)
.attr("fill", function(d) { return color(nodeByName); });
function ticked() {
link
.attr("x1", function(d) { return d.source.x; })
.attr("y1", function(d) { return d.source.y; })
.attr("x2", function(d) { return d.target.x; })
.attr("y2", function(d) { return d.target.y; });
node
.attr("cx", function(d) { return d.x; })
.attr("cy", function(d) { return d.y; });
}
});
function dragstarted(d) {
if (!d3.event.active) simulation.alphaTarget(0.3).restart();
d.fx = d.x;
d.fy = d.y;
}
function dragged(d) {
d.fx = d3.event.x;
d.fy = d3.event.y;
}
function dragended(d) {
if (!d3.event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
</script>
https://d3js.org/d3.v4.min.js