An example scatter plot with color legend using D3 and d3-legend.
This shows Wisconsin breast cancer dataset. Originally published at UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set, this dataset was also published on Kaggle This data set contains information about benign or malignant and ten features computed for each cell nucleus, such as radius, texture, and perimeter.
The data visualization shows these two different clusters(B and M).
Forked from curran 's Stylized Scatter Plot with Color Legend.
xxxxxxxxxx
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3-legend/2.24.0/d3-legend.min.js"></script>
<title>Basic Scatter Plot</title>
<style>
body {
margin: 0px;
}
.domain {
display: none;
}
.tick line {
stroke: #C0C0BB;
}
.tick text, .legendCells text {
fill: #8E8883;
font-size: 18pt;
font-family: sans-serif;
}
.axis-label, .legend-label {
fill: #635F5D;
font-size: 30pt;
font-family: sans-serif;
}
</style>
</head>
<body>
<svg width="960" height="500"></svg>
<script>
const xValue = d => d.radius_mean;
const xLabel = 'Radius Mean';
const yValue = d => d.texture_mean;
const yLabel = 'Texture Mean';
const diaName = { "M": "Malignant", "B": "Benign"}
const colorValue = d => diaName[d.diagnosis];
const colorLabel = 'Diagnosis';
const margin = { left: 120, right: 300, top: 20, bottom: 120 };
const svg = d3.select('svg');
const width = svg.attr('width');
const height = svg.attr('height');
const innerWidth = width - margin.left - margin.right;
const innerHeight = height - margin.top - margin.bottom;
const g = svg.append('g')
.attr('transform', `translate(${margin.left},${margin.top})`);
const xAxisG = g.append('g')
.attr('transform', `translate(0, ${innerHeight})`);
const yAxisG = g.append('g');
const colorLegendG = g.append('g')
.attr('transform', `translate(${innerWidth + 60}, 150)`);
xAxisG.append('text')
.attr('class', 'axis-label')
.attr('x', innerWidth / 2)
.attr('y', 100)
.text(xLabel);
yAxisG.append('text')
.attr('class', 'axis-label')
.attr('x', -innerHeight / 2)
.attr('y', -60)
.attr('transform', `rotate(-90)`)
.style('text-anchor', 'middle')
.text(yLabel);
colorLegendG.append('text')
.attr('class', 'legend-label')
.attr('x', -30)
.attr('y', -40)
.text(colorLabel);
const xScale = d3.scaleLinear();
const yScale = d3.scaleLinear();
const colorScale = d3.scaleOrdinal()
.range(d3.schemeCategory10);
const xAxis = d3.axisBottom()
.scale(xScale)
.tickPadding(15)
.tickSize(-innerHeight);
const yAxis = d3.axisLeft()
.scale(yScale)
.ticks(5)
.tickPadding(15)
.tickSize(-innerWidth);
const colorLegend = d3.legendColor()
.scale(colorScale)
.shape('circle');
const row = d => {
d.radius_mean = +d.radius_mean;
d.texture_mean = +d.texture_mean;
return d;
};
d3.csv('breast_cancer.csv', row, data => {
xScale
.domain(d3.extent(data, xValue))
.range([0, innerWidth])
.nice(); // neat function name!
yScale
.domain(d3.extent(data, yValue))
.range([innerHeight, 0])
.nice();
g.selectAll('circle').data(data)
.enter().append('circle')
.attr('cx', d => xScale(xValue(d)))
.attr('cy', d => yScale(yValue(d)))
.attr('fill', d => colorScale(colorValue(d)))
.attr('fill-opacity', 0.6)
.attr('r', 5);
xAxisG.call(xAxis);
yAxisG.call(yAxis);
colorLegendG.call(colorLegend)
.selectAll('.cell text')
.attr('dy', '0.1em');
});
</script>
</body>
</html>
https://d3js.org/d3.v4.min.js
https://cdnjs.cloudflare.com/ajax/libs/d3-legend/2.24.0/d3-legend.min.js