Any polygon can be decomposed into a finite (though possibly large) number of polygons that can be rearranged through rotations and translations to form another polygon of equal area. This is known as equidecomposition.
The first step in one well-known algorithm for accomplishing this involves decomposing a triangle into a square.
In order to decompose a triangle into another triangle of equal area, it is necessary to intersect collections of polygons contained in a square common to both triangles.
See d3-equidecompose.
xxxxxxxxxx
<meta charset="utf-8">
<style>
circle {
stroke: #aaa;
stroke-dasharray: 5, 5;
stroke-width: 1px;
fill: none;
}
path {
stroke-linecap: butt;
}
.figure {
pointer-events: none;
fill-opacity: 0.6;
stroke-width: 1px;
stroke: #000;
fill: none;
}
</style>
<svg width="960" height="500">g</svg>
<script src="https://d3js.org/d3-polygon.v0.2.min.js"></script>
<script src="partials.js"></script>
<script src="https://d3js.org/d3.v3.min.js"></script>
<script>
// The global `partials` exposes methods and constructors that are internal to
// d3-equidecompose and the future exported global d3_equidecompose (or d3_decompose).
var color, svg, line, figure, translation, rotation,
N = 3, vertices, data, polygons,
width = 960,
height = 500,
centroid, r = 220,
count = 0; // number of completed transitions have completed
// sample triangle vertices from circle centered on viewport
vertices = d3.range(N).map(function(d, i) {
var theta = Math.random() * Math.PI * 2;
return [(width / 2) + r * Math.cos(theta), (height / 2) + r * Math.sin(theta)];
});
// Polygons resulting from cutting the triangle into the canonical rectangle
// and the canonical rectangle into a square. Polygons are positioned in the square.
data = partials.rectangle2Square(partials.triangle2Rectangle(vertices));
c1 = [width / 2, height / 2]; // center of viewport
c2 = d3_polygon.polygonCentroid(data.square); // square centroid
// translate square to center of viewport
data.forEach(function(d) {
d.translate([(c1[0] - c2[0]), (c1[1] - c2[1])]);
d.transforms.push({
translate: [-(c1[0] - c2[0]), -(c1[1] - c2[1])]
});
});
color = d3.scale.category10();
svg = d3.select("svg").append("g");
line = d3.svg.line()
.x(function(d) { return d[0]; })
.y(function(d) { return d[1]; })
.interpolate("linear-closed");
figure = svg.append("g").attr("class", "collection")
.attr("transform", translate([width/2 - c1[0], height/2 - c1[1]]))
.selectAll("g")
.data(data.map(function(_, i) {
var c = _.centroid(), d, a, b;
d = partials.polygon(_.slice()).translate([-c[0], -c[1]]);
a = data[i].centroid();
b = data[i].origin().centroid();
d.transform = {
centroid: a,
rotation: 0,
translate: [b[0] - a[0], b[1] - a[1]],
rotate: data[i].rotation()
};
return d;
}));
// nest translation under group to hold entire collection of polygons
translation = figure.enter().append("g")
.attr("class", "translation")
.attr("transform", function(d) {return translate(d.transform.centroid)});
// nest rotation under translation group (with a rigid translation)
rotation = translation.append("g").attr("class", "rotation");
rotation.append("path")
.style("fill", function(d, i) { return color(i); })
.attr("class", "figure")
.attr("d", line);
// circumcircle
svg.append("circle")
.attr("cx", width / 2)
.attr("cy", height / 2)
.attr("r", r)
// looping tween of polygons from target position to orignal shape
figure.transition()
.delay(function(d, i) {return i * 200 + 1000})
.each(tween);
function tween(_, i) {
var that = this, C, T, R;
C = _.transform.centroid;
T = _.transform.translate;
R = _.transform.rotation;
// rigid translation
d3.select(this).transition()
.duration(1000)
.ease("circle")
.attrTween("transform", function(d) {
var origin, target;
origin = translate(C);
target = translate([C[0] + T[0], C[1] + T[1]]);
return d3.interpolateString(origin, target);
})
.each("end", function(d, i) {
count++;
if (count == data.length) {
count = 0;
figure.transition()
.delay(function(d, i) {return i * 200 + 1000})
.each(tween);
}
});
// rigid rotation about polygon centroid, nested under translation group
d3.select(this).select(".rotation").transition()
.duration(1000)
.ease("circle")
.attrTween("transform", function(d) {
var origin, target;
origin = rotate(R);
target = rotate(R + d.transform.rotate);
return d3.interpolateString(origin, target);
})
// cache transform (translation and rotation about centroid) to reverse this tween
_.transform.centroid = [C[0] + T[0], C[1] + T[1]];
_.transform.translate = [-T[0], -T[1]]
_.transform.rotation = R + _.transform.rotate;
_.transform.rotate = -_.transform.rotate;
}
// SVG translation string
function translate(T) {
return "translate(" + T[0] + " " + T[1] + ")";
}
// SVG rotation string
function rotate(angle) {
return "rotate(" + angle + ")";
}
</script>
https://d3js.org/d3-polygon.v0.2.min.js
https://d3js.org/d3.v3.min.js