Cost function J(θ) convergence for different learning rate α values.
xxxxxxxxxx
<meta charset="utf-8">
<style>
body {
font: 10px sans-serif;
}
.axis path,
.axis line {
fill: none;
stroke: #fff;
shape-rendering: crispEdges;
}
.axis text {
font-weight: bold;
}
.line {
fill: none;
stroke: #000;
stroke-width: 1.2px;
stroke-linejoin: round;
}
</style>
<body>
<script src="https://d3js.org/d3.v3.min.js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 20, left: 30},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;
var x = d3.scale.linear()
.range([0, width]);
var y = d3.scale.linear()
.range([height, 0]);
var xAxis = d3.svg.axis()
.scale(x)
.tickSize(-height)
.tickPadding(8)
.orient("bottom");
var yAxis = d3.svg.axis()
.scale(y)
.tickSize(-width)
.tickPadding(8)
.orient("left");
var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
d3.csv("data.csv", function(error, data) {
// Some gradient descent settings
var iterationNumber = 150,
m = data.length,
alpha = [0.01,0.001,0.0005,0.0001],
theta0 = 0,
theta1 = 0;
data.forEach(function(d) {
d.population = +d.population;
d.profit = +d.profit;
});
var values = alpha.map(function(alphaValue) {
var costHistory = [];
theta0 = 0;
theta1 = 0;
for(i=0;i<iterationNumber;i++) {
costHistory.push({iteration: i, cost: computeCost(data, theta0, theta1) });
var temp0 = theta0 - alphaValue * (1/m) * d3.sum(data.map(function(d) { return ((theta1 * d.population + theta0) - d.profit); }));
var temp1 = theta1 - alphaValue * (1/m) * d3.sum(data.map(function(d) { return ((theta1 * d.population + theta0) - d.profit) * d.population ; }));
theta0 = temp0;
theta1 = temp1;
};
return {alpha: alphaValue, data: costHistory};
})
x.domain([0,iterationNumber]);
var yMin = d3.min(values, function(alphaValue) { return d3.min(alphaValue.data, function(d) { return d.cost; }); });
var yMax = d3.max(values, function(alphaValue) { return d3.max(alphaValue.data, function(d) { return d.cost; }); });
y.domain([yMin,yMax]).nice();
var line = d3.svg.line()
.interpolate("basis")
.x(function(d) { return x(d.iteration); })
.y(function(d) { return y(d.cost); });
svg.append("rect")
.attr("class", "background")
.attr("width", width)
.attr("height", height)
.style("fill","#e7e7e7");
svg.append("g")
.attr("class", "x axis")
.attr("transform", "translate(0," + height + ")")
.call(xAxis)
.append("text")
.attr("class", "label")
.attr("x", width-5)
.attr("y", -6)
.style("text-anchor", "end")
.style("font-weight","bold")
.text("Number of iterations");
svg.append("g")
.attr("class", "y axis")
.call(yAxis)
.append("text")
.attr("class", "label")
.attr("transform", "rotate(-90)")
.attr("dx","-.71em")
.attr("y", 6)
.attr("dy", ".71em")
.style("font-weight","bold")
.style("text-anchor", "end")
.text("J(θ)")
var path = svg.selectAll(".line")
.data(values).enter()
path.append("path")
.attr("id", function(d) { console.log(d); return d.alpha; })
.attr("class","line")
.attr("d", function(d) { return line(d.data); });
path.append("text")
.attr("dy", "-3px")
.append("textPath")
.attr("xlink:href", function(d) { return "#" + d.alpha; })
.attr("startOffset", "24%")
.style("font-weight","bold")
.text(function(d) { return "α = " + d.alpha; });
function computeCost (data, theta0, theta1) {
var cost = 0;
data.forEach(function(d) {
cost += Math.pow((theta1 * d.population + theta0 - d.profit),2);
});
return cost/(2 * m);
};
});
</script>
https://d3js.org/d3.v3.min.js