This is my first visualization with D3, using data from a project I recently did with Metis. I took the yelp corpus from 1/2 star ratings and took the twitter vocabulary for tweets my model predicted were similar to the 1/2 star ratings and plotted the top 100 words for each (excluding stopwords).
Some things I think are interesting about this are how much the words overlap/how much they don't, and how accurate the words themselves are, despite possibly not occurring in the yelp reviews at all.
scroll bar side to side
yelp/twitter button to show only one or the other
hover over examples
animations just because animations
forked from mbostock's block: Stacked Bar Chart
forked from emilyinamillion's block: Stacked Bar Chart
xxxxxxxxxx
<meta charset="utf-8">
<style>
body {
font: 8px sans-serif;
}
.axis path,
.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
.bar {
fill: blue;
}
.x.axis path {
display: none;
}
</style>
<body>
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var margin = {top: 20, right: -5, bottom: 50, left: 35},
width = 961 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;
var x = d3.scale.ordinal()
.rangeRoundBands([0, width], .1);
var y = d3.scale.linear()
.rangeRound([height, 0]);
var color = d3.scale.ordinal()
.range(["#D98880", "#A9CCE3", ]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom");
var yAxis = d3.svg.axis()
//.scale(y)
.orient("left")
.tickFormat(d3.format(".2s"));
var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
d3.csv("fullshebangdata4d3.csv", function(error, data) {
if (error) throw error;
color.domain(d3.keys(data[0]).filter(function(key) { return key !== "word"; }));
data.forEach(function(d) {
var y0 = 0;
d.ages = color.domain().map(function(name) { return {name: name, y0: y0, y1: y0 += +d[name]}; });
d.total = d.ages[d.ages.length - 1].y1;
});
data.sort(function(a, b) { return b.total - a.total; });
x.domain(data.map(function(d) { return d.word; }));
y.domain([0, d3.max(data, function(d) { return d.total; })]);
svg.append("g")
.attr("class", "x axis")
.attr("transform", "translate(0," + height + ")")
.call(xAxis)
.selectAll("text")
.style("text-anchor", "end")
.attr("dx", "-.8em")
.attr("dy", "-.80em")
.attr("transform", "rotate(-90)")
;
svg.append("g")
.attr("class", "y axis")
.call(yAxis)
.append("text")
.attr("transform", "rotate(-90)")
.attr("y", 6)
.attr("dy", "1.43704em")
.attr("font-size", "20")
.style("text-anchor", "end")
.text("Word Frequency");
var state = svg.selectAll(".word")
.data(data)
.enter().append("g")
.attr("class", "g")
.attr("transform", function(d) { return "translate(" + x(d.word) + ",0)"; });
state.selectAll("rect")
.data(function(d) { return d.ages; })
.enter().append("rect")
.attr("width", x.rangeBand())
.attr("y", function(d) { return y(d.y1); })
.attr("height", function(d) { return y(d.y0) - y(d.y1); })
.style("fill", function(d) { return color(d.name); });
var legend = svg.selectAll(".legend")
.data(color.domain().slice().reverse())
.enter().append("g")
.attr("class", "legend")
.attr("transform", function(d, i) { return "translate(0," + i * 20 + ")"; });
legend.append("rect")
.attr("x", width - 59)
.attr("y", 9)
.attr("width", 27)
.attr("height", 16)
.style("fill", color);
legend.append("text")
.attr("x", width - 67)
.attr("y", 18)
.attr("font-size", 19)
.attr("dy", ".35em")
.style("text-anchor", "end")
.text(function(d) { return d; });
});
</script>
https://d3js.org/d3.v3.min.js