// Equations based on NOAA’s Solar Calculator; all angles in radians. // http://www.esrl.noaa.gov/gmd/grad/solcalc/ (function() { var J2000 = Date.UTC(2000, 0, 1, 12), π = Math.PI, τ = 2 * π, radians = π / 180, degrees = 180 / π; solarCalculator = function(location) { var longitude = location[0], minutesOffset = 720 - longitude * 4, λ = location[0] * radians, φ = location[1] * radians, cosφ = Math.cos(φ), sinφ = Math.sin(φ); function position(date) { var centuries = (date - J2000) / (864e5 * 36525), θ = solarDeclination(centuries), cosθ = Math.cos(θ), sinθ = Math.sin(θ), azimuth = ((date - d3.time.day.utc.floor(date)) / 864e5 * τ + equationOfTime(centuries) + λ) % τ - π, zenith = Math.acos(Math.max(-1, Math.min(1, sinφ * sinθ + cosφ * cosθ * Math.cos(azimuth)))), azimuthDenominator = cosφ * Math.sin(zenith); if (azimuth < -π) azimuth += τ; if (Math.abs(azimuthDenominator) > 1e-6) azimuth = (azimuth > 0 ? -1 : 1) * (π - Math.acos(Math.max(-1, Math.min(1, (sinφ * Math.cos(zenith) - sinθ) / azimuthDenominator)))); if (azimuth < 0) azimuth += τ; // Correct for atmospheric refraction. var atmosphere = 90 - zenith * degrees; if (atmosphere <= 85) { var te = Math.tan(atmosphere * radians); zenith -= (atmosphere > 5 ? 58.1 / te - .07 / (te * te * te) + .000086 / (te * te * te * te * te) : atmosphere > -.575 ? 1735 + atmosphere * (-518.2 + atmosphere * (103.4 + atmosphere * (-12.79 + atmosphere * .711))) : -20.774 / te) / 3600 * radians; } // Note: if zenith > 108°, it’s dark. return [azimuth * degrees, 90 - zenith * degrees]; } function noon(date) { var centuries = (d3.time.day.utc.floor(date) - J2000) / (864e5 * 36525), minutes = (minutesOffset - (equationOfTime(centuries + (minutesOffset - (equationOfTime(centuries - longitude / (360 * 365.25 * 100)) * degrees * 4)) / (1440 * 365.25 * 100)) * degrees * 4) - date.getTimezoneOffset()) % 1440; if (minutes < 0) minutes += 1440; return new Date(+d3.time.day.floor(date) + minutes * 60 * 1000); } return { position: position, noon: noon }; }; function equationOfTime(centuries) { var e = eccentricityEarthOrbit(centuries), m = solarGeometricMeanAnomaly(centuries), l = solarGeometricMeanLongitude(centuries), y = Math.tan(obliquityCorrection(centuries) / 2); y *= y; return y * Math.sin(2 * l) - 2 * e * Math.sin(m) + 4 * e * y * Math.sin(m) * Math.cos(2 * l) - 0.5 * y * y * Math.sin(4 * l) - 1.25 * e * e * Math.sin(2 * m); } function solarDeclination(centuries) { return Math.asin(Math.sin(obliquityCorrection(centuries)) * Math.sin(solarApparentLongitude(centuries))); } function solarApparentLongitude(centuries) { return solarTrueLongitude(centuries) - (0.00569 + 0.00478 * Math.sin((125.04 - 1934.136 * centuries) * radians)) * radians; } function solarTrueLongitude(centuries) { return solarGeometricMeanLongitude(centuries) + solarEquationOfCenter(centuries); } function solarGeometricMeanAnomaly(centuries) { return (357.52911 + centuries * (35999.05029 - 0.0001537 * centuries)) * radians; } function solarGeometricMeanLongitude(centuries) { var l = (280.46646 + centuries * (36000.76983 + centuries * 0.0003032)) % 360; return (l < 0 ? l + 360 : l) / 180 * π; } function solarEquationOfCenter(centuries) { var m = solarGeometricMeanAnomaly(centuries); return (Math.sin(m) * (1.914602 - centuries * (0.004817 + 0.000014 * centuries)) + Math.sin(m + m) * (0.019993 - 0.000101 * centuries) + Math.sin(m + m + m) * 0.000289) * radians; } function obliquityCorrection(centuries) { return meanObliquityOfEcliptic(centuries) + 0.00256 * Math.cos((125.04 - 1934.136 * centuries) * radians) * radians; } function meanObliquityOfEcliptic(centuries) { return (23 + (26 + (21.448 - centuries * (46.8150 + centuries * (0.00059 - centuries * 0.001813))) / 60) / 60) * radians; } function eccentricityEarthOrbit(centuries) { return 0.016708634 - centuries * (0.000042037 + 0.0000001267 * centuries); } })();