One child policy from China is a fascinating topic. Some say it is an evil policy which against human rights, but others argue the policy is the life-saving policy which slowing the world-population-expanding crisis. Basic on the table below, we can see the policy actually have an effective and remarkable impact for both China population and World population. Recently, another topic starts to occupy China mainstream media -- Chinese male crisis, there is more and more Chinese male cannot find wifes to marry. However, basic on what I found from Data UN, in Chinese population sections, the female proportion of the total population keep increasing from 1949 to 2017. Which leads to another interesting question, why is that more and more Chinese male cannot find a spouse in China? If you want to know, please keep follow my block ^ ^
xxxxxxxxxx
<html>
<head>
<title>All the dataset from UNdata</title>
<!-- Load JQuery -->
<script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="https://code.highcharts.com/highcharts.js"></script>
<script src="https://code.highcharts.com/modules/exporting.js"></script>
<meta charset="utf-8">
<style>
</style>
</head>
<body>
<h2>Chinese Male Marriage Crisis</h2>
<div id="container" style="min-width: 310px; height: 400px; margin: 0 auto"></div>
<script>
$(function () {
Highcharts.chart('container', {
chart: {
zoomType: 'xy'
},
title: {
text: 'UN Data'
},
xAxis: {
categories: ['1949', '1950', '1951', '1955', '1960', '1965', '1970'
, '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979', '1980'
, '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1990'
, '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000'
, '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010'
, '2011', '2012', '2013', '2014', '2015']
},
plotOptions: {
column: {
stacking: 'normal',
}
},
series: [{
type: 'column',
name: 'Female_Population',
data: [26022, 26527, 27069, 29656, 31924, 35410, 40306, 41410, 42364, 43335, 44132,
44856, 45460, 46066, 46692, 47350, 47920, 48553, 49302, 49856, 50509, 51126,
51926, 53010, 53825, 54605, 55429, 56357, 57360, 58045, 58604, 59313, 60189,
60495, 60821, 61094, 61306, 61955, 62338, 62671, 63012, 63381, 63720, 64081,
64445, 64803, 65343, 65667, 66009, 66344, 66703, 67048]
}, {
type: 'column',
name: 'Male_Population',
data: [28145, 28669, 29231, 31809, 34283, 37128, 42686, 43819, 44813, 45876, 46727,
47564, 48257, 48908, 49567, 50192, 50785, 51519, 52352, 53152, 53848, 54725,
55581, 56290, 57201, 58099, 58904, 59466, 59811, 60472, 61246, 61808, 62200,
63131, 63940, 64692, 65437, 65672, 66115, 66556, 66976, 67375, 67728, 68048,
68357, 68647, 68748, 69068, 69395, 69728, 70079, 70414]
}, {
type: 'spline',
name: 'Total_Population',
data: [54167, 55196, 56300, 61465, 66207, 72538, 82992, 85229, 87177, 89211, 90859,
92420, 93717, 94974, 96259, 97542, 98705, 100072, 101654, 103008, 104357, 105851,
107507, 109300, 111026, 112704, 114333, 115823, 117171, 118517, 119850, 121121, 122389,
123626, 124761, 125786, 126743, 127627, 128453, 129227, 129988, 130756, 131448, 132129,
132802, 133450, 134091, 134735, 135404, 136072, 136782, 137462],
marker: {
lineWidth: 2,
lineColor: Highcharts.getOptions().colors[3],
fillColor: 'white'
}
}]
});
});
</script>
</body>
</html>
https://code.jquery.com/jquery-1.9.1.min.js
https://code.highcharts.com/highcharts.js
https://code.highcharts.com/modules/exporting.js