D3
OG
Old school D3 from simpler times
All examples
By author
By category
About
rayeip
Full window
Github gist
Baltimore race
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>Line Chart</title> <script type="text/javascript" src="https://d3js.org/d3.v3.js"></script> <style type="text/css"> body { background-color: white; font-family: Helvetica, Arial, sans-serif; } h1 { font-size: 24px; margin: 0; } p { font-size: 14px; margin: 10px 0 0 0; } svg { background-color: white; } circle:hover { fill: orange; } path { stroke: gray; stroke-width: 2; } g.black path { stroke: steelblue; stroke-width: 2; } g.white path { stroke: red; stroke-width: 2; } .axis path, .axis line { fill: none; stroke: black; stroke-width: .5; shape-rendering: crispEdges; } .axis text { font-family: sans-serif; font-size: 11px; } </style> </head> <body> <h1>Baltimore's Racial Composition</h1> <p>Populuation of <strong style="color: steelblue;">blacks,</strong> <strong style="color: red;">whites</strong> and <strong style="color: gray;">others</strong>, 1970-2013; in thousands. Source: <a href="https://www.census.gov/popest/data/historical/index.html">U.S. Census Bureau</a></p> <script type="text/javascript"> var w = 700; var h = 600; var padding = [ 20, 10, 50, 100 ]; //Top, right, bottom, left //Set up date formatting and years var dateFormat = d3.time.format("%Y"); var xScale = d3.time.scale() .range([ padding[3], w - padding[1] - padding[3] ]); var yScale = d3.scale.linear() .range([ padding[0], h - padding[2] ]); var xAxis = d3.svg.axis() .scale(xScale) .orient("bottom") .ticks(15) .tickFormat(function(d) { return dateFormat(d); }); var yAxis = d3.svg.axis() .scale(yScale) .orient("left"); var line = d3.svg.line() .x(function(d) { return xScale(dateFormat.parse(d.year)); }) .y(function(d) { return yScale(d.amount); }); var svg = d3.select("body") .append("svg") .attr("width", w) .attr("height", h); //Load data d3.csv("BaltimoreRace2.csv", function(data) { //Data is loaded in, but we need to restructure it. //Remember, each line requires an array of x/y pairs; //that is, an array of arrays, like so: // // [ [x: 1, y: 1], [x: 2, y: 2], [x: 3, y: 3] ] // //We, however, are using 'year' as x and 'amount' as y. //We also need to know which race belongs to each //line, so we will build an array of objects that is //structured like this: /* [ { race: "Australia", population: [ { year: 1961, amount: 90589.568 }, { year: 1962, amount: 94912.961 }, { year: 1963, amount: 101029.517 }, … ] }, { race: "Bermuda", population: [ { year: 1961, amount: 176.016 }, { year: 1962, amount: 157.681 }, { year: 1963, amount: 150.347 }, … ] }, … ] */ //Note that this is an array of objects. Each object //contains two values, 'race' and 'population'. //The 'population' value is itself an array, containing //more objects, each one holding 'year' and 'amount' values. //New array with all the years, for referencing later var years = ["1970", "1971", "1972", "1973", "1974", "1975", "1976", "1977", "1978", "1979", "1980", "1981", "1982", "1983", "1984", "1985", "1986", "1987", "1988", "1989", "1990", "1991", "1992", "1993", "1994", "1995", "1996", "1997", "1998", "1999", "2000", "2001", "2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009", "2010", "2011", "2012", "2013"]; //Create a new, empty array to hold our restructured dataset var dataset = []; //Loop once for each row in data for (var i = 0; i < data.length; i++) { //Create new object with this race's name and empty array dataset[i] = { race: data[i].raceCat, population: [] }; //Loop through all the years for (var j = 0; j < years.length; j++) { // If value is not empty if (data[i][years[j]]) { //Add a new object to the population data array //for this race dataset[i].population.push({ year: years[j], amount: data[i][years[j]] }); } } } //Uncomment to log the original data to the console // console.log(data); //Uncomment to log the newly restructured dataset to the console // console.log(dataset); //Set scale domains xScale.domain([ d3.min(years, function(d) { return dateFormat.parse(d); }), d3.max(years, function(d) { return dateFormat.parse(d); }) ]); yScale.domain([ d3.max(dataset, function(d) { return d3.max(d.population, function(d) { return +d.amount; }); }), 0 ]); //Make a group for each race var groups = svg.selectAll("g") .data(dataset) .enter() .append("g") .classed("black", function(d) { if (d.race == "Black") { return true; } else { return false; } }) .classed("white", function(d) { if (d.race == "White") { return true; } else { return false; } }); //Append a title with the race name (so we get easy tooltips) groups.append("title") .text(function(d) { return d.race; }); //Within each group, create a new line/path, //binding just the population data to each one groups.selectAll("path") .data(function(d) { return [ d.population ]; }) .enter() .append("path") .attr("class", "line") .attr("d", line) .attr("fill", "none") .attr("stroke", "steelblue") .attr("stroke-width", 2); //Axes svg.append("g") .attr("class", "x axis") .attr("transform", "translate(0," + (h - padding[2]) + ")") .call(xAxis); svg.append("g") .attr("class", "y axis") .attr("transform", "translate(" + (padding[3]) + ",0)") .call(yAxis); }); //End USA data load function </script> </body> </html>
Modified
http://d3js.org/d3.v3.js
to a secure url
https://d3js.org/d3.v3.js