(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define('d3-venn', ['exports'], factory) : factory((global.d3_venn = {})); }(this, function (exports) { 'use strict'; /** * getSet creates a getter/setter function for a re-usable D3.js component. * * @method getSet * @param {string} option - the name of the object in the string you want agetter/setter for. * @param {function} component - the D3 component this getter/setter relates to. * * @return {mixed} The value of the option or the component. */ function getSet(option, component) { return function(_) { if (! arguments.length) { return this[option]; } this[option] = _; return component; }; } function applier(component, options) { for (var key in options) { if(component[key] && (typeof component[key] == "function")) { component[key](options[key]); } } return component; } function binder(component, options) { for (var key in options) { if(!component[key]) { component[key] = getSet(key, component).bind(options); } } } // import distance from const SMALL = 1e-10; /** Returns the intersection area of a bunch of circles (where each circle is an object having an x,y and radius property) */ function intersectionArea(circles, stats) { // get all the intersection points of the circles var intersectionPoints = getIntersectionPoints(circles); // filter out points that aren't included in all the circles var innerPoints = intersectionPoints.filter(function(p) { return containedInCircles(p, circles); }); var arcArea = 0, polygonArea = 0, arcs = [], i; // if we have intersection points that are within all the circles, // then figure out the area contained by them if (innerPoints.length > 1) { // sort the points by angle from the center of the polygon, which lets // us just iterate over points to get the edges var center = getCenter(innerPoints); for (i = 0; i < innerPoints.length; ++i) { var p = innerPoints[i]; p.angle = Math.atan2(p.x - center.x, p.y - center.y); } innerPoints.sort(function(a, b) { return b.angle - a.angle; }); // iterate over all points, get arc between the points // and update the areas var p2 = innerPoints[innerPoints.length - 1]; for (i = 0; i < innerPoints.length; ++i) { var p1 = innerPoints[i]; // polygon area updates easily ... polygonArea += (p2.x + p1.x) * (p1.y - p2.y); // updating the arc area is a little more involved var midPoint = { x: (p1.x + p2.x) / 2, y: (p1.y + p2.y) / 2 }, arc = null; for (var j = 0; j < p1.parentIndex.length; ++j) { if (p2.parentIndex.indexOf(p1.parentIndex[j]) > -1) { // figure out the angle halfway between the two points // on the current circle var circle = circles[p1.parentIndex[j]], a1 = Math.atan2(p1.x - circle.x, p1.y - circle.y), a2 = Math.atan2(p2.x - circle.x, p2.y - circle.y); var angleDiff = (a2 - a1); if (angleDiff < 0) { angleDiff += 2 * Math.PI; } // and use that angle to figure out the width of the // arc var a = a2 - angleDiff / 2, width = distance(midPoint, { x: circle.x + circle.radius * Math.sin(a), y: circle.y + circle.radius * Math.cos(a) }); // pick the circle whose arc has the smallest width if ((arc === null) || (arc.width > width)) { arc = { circle: circle, width: width, p1: p1, p2: p2 }; } } } arcs.push(arc); arcArea += circleArea(arc.circle.radius, arc.width); p2 = p1; } } else { // no intersection points, is either disjoint - or is completely // overlapped. figure out which by examining the smallest circle var smallest = circles[0]; for (i = 1; i < circles.length; ++i) { if (circles[i].radius < smallest.radius) { smallest = circles[i]; } } // make sure the smallest circle is completely contained in all // the other circles var disjoint = false; for (i = 0; i < circles.length; ++i) { if (distance(circles[i], smallest) > Math.abs(smallest.radius - circles[i].radius)) { disjoint = true; break; } } if (disjoint) { arcArea = polygonArea = 0; } else { arcArea = smallest.radius * smallest.radius * Math.PI; arcs.push({ circle: smallest, p1: { x: smallest.x, y: smallest.y + smallest.radius }, p2: { x: smallest.x - SMALL, y: smallest.y + smallest.radius }, width: smallest.radius * 2 }); } } polygonArea /= 2; if (stats) { stats.area = arcArea + polygonArea; stats.arcArea = arcArea; stats.polygonArea = polygonArea; stats.arcs = arcs; stats.innerPoints = innerPoints; stats.intersectionPoints = intersectionPoints; } return arcArea + polygonArea; } /** returns whether a point is contained by all of a list of circles */ function containedInCircles(point, circles) { for (var i = 0; i < circles.length; ++i) { if (distance(point, circles[i]) > circles[i].radius + SMALL) { return false; } } return true; } /** Gets all intersection points between a bunch of circles */ function getIntersectionPoints(circles) { var ret = []; for (var i = 0; i < circles.length; ++i) { for (var j = i + 1; j < circles.length; ++j) { var intersect = circleCircleIntersection(circles[i], circles[j]); for (var k = 0; k < intersect.length; ++k) { var p = intersect[k]; p.parentIndex = [i, j]; ret.push(p); } } } return ret; } function circleIntegral(r, x) { var y = Math.sqrt(r * r - x * x); return x * y + r * r * Math.atan2(x, y); } /** Returns the area of a circle of radius r - up to width */ function circleArea(r, width) { return circleIntegral(r, width - r) - circleIntegral(r, -r); } /** euclidean distance between two points */ function distance(p1, p2) { return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y)); } /** Returns the overlap area of two circles of radius r1 and r2 - that have their centers separated by distance d. Simpler faster circle intersection for only two circles */ function circleOverlap(r1, r2, d) { // no overlap if (d >= r1 + r2) { return 0; } // completely overlapped if (d <= Math.abs(r1 - r2)) { return Math.PI * Math.min(r1, r2) * Math.min(r1, r2); } var w1 = r1 - (d * d - r2 * r2 + r1 * r1) / (2 * d), w2 = r2 - (d * d - r1 * r1 + r2 * r2) / (2 * d); return circleArea(r1, w1) + circleArea(r2, w2); } /** Given two circles (containing a x/y/radius attributes), returns the intersecting points if possible. note: doesn't handle cases where there are infinitely many intersection points (circles are equivalent):, or only one intersection point*/ function circleCircleIntersection(p1, p2) { var d = distance(p1, p2), r1 = p1.radius, r2 = p2.radius; // if to far away, or self contained - can't be done if ((d >= (r1 + r2)) || (d <= Math.abs(r1 - r2))) { return []; } var a = (r1 * r1 - r2 * r2 + d * d) / (2 * d), h = Math.sqrt(r1 * r1 - a * a), x0 = p1.x + a * (p2.x - p1.x) / d, y0 = p1.y + a * (p2.y - p1.y) / d, rx = -(p2.y - p1.y) * (h / d), ry = -(p2.x - p1.x) * (h / d); return [{ x: x0 + rx, y: y0 - ry }, { x: x0 - rx, y: y0 + ry }]; } /** Returns the center of a bunch of points */ function getCenter(points) { var center = { x: 0, y: 0 }; for (var i = 0; i < points.length; ++i) { center.x += points[i].x; center.y += points[i].y; } center.x /= points.length; center.y /= points.length; return center; } //return true when the point is out of all circles function outOfCircles(point, circles) { for (var i = 0; i < circles.length; ++i) { if (venn.distance(point, circles[i]) < circles[i].radius + SMALL) { return false; } } return true; } // function called from d3.layout.venn // used to pack child nodes insiside inner circle of a venn set. function pack(layout) { // var valueFn = layout.value(); var packerConfig = layout.packerConfig(); layout.sets().forEach(function(k,set) { // function pack(set, valueFn) { var innerRadius = set.innerRadius, center = set.center, children = set.nodes, x = center.x - innerRadius, y = center.y - innerRadius; applier(d3.layout.pack(), packerConfig) .size([innerRadius * 2, innerRadius * 2]) .nodes({ children: children }); // translate the notes to the center if (children) { children.forEach(function(n) { n.x += x; n.y += y; }); } }) } // function called from d3.layout.venn // used to randomly distribute child nodes insiside a venn set. // d3.layout.venn.packCircles looks prettier. function distribute(layout) { // var valueFn = layout.value(), var circles = layout.circles(); layout.sets().forEach(function(k,set) { var queue = [], maxAttempt = 500, k, inCircles = [], outCircles = []; for (k in circles) { if (set.sets.indexOf(k) > -1) { inCircles.push(circles[k]) } else { outCircles.push(circles[k]) } } // distanceToCircles.set(set.__key, computeDistanceToCircles(set)) set.nodes.map(function(n, i) { var attempt = 0, candidate = null; if (i == 0) { // first node centered n.x = textCentres[set.__key__].x; n.y = textCentres[set.__key__].y; queue.push(n) } else { while (!candidate && (attempt < maxAttempt)) { var i = Math.random() * queue.length | 0, s = queue[i], a = 2 * Math.PI * Math.random(), r = Math.sqrt(Math.random() * ((innerRadius * innerRadius) + (10 * 10))), p = { x: s.x + r * Math.cos(a), y: s.y + r * Math.sin(a) }; attempt++; if (venn.containedInCircles(p, inCircles) && (outOfCircles(p, outCircles))) { candidate = p; queue.push(p) } } if (!candidate) { console.warn('NO CANDIDATE') candidate = { x: textCentres[set.__key__].x, y: textCentres[set.__key__].y } } n.x = candidate.x; n.y = candidate.y; nodes.push(n); } }); }) } // apply a d3.fore layout with foci on venn area center to set foci // d3.layout.venn.packCircles looks prettier. function force(layout, data) { var force = layout.packer() if (!force) { force = d3.layout.force(); binder(force, { padding : 3, maxRadius : 8, collider : true, ticker: null }); } var packingConfig = layout.packingConfig(), size = layout.size(), sets = layout.sets(), padding = force.padding(), // separation between nodes maxRadius = force.maxRadius(), collider = force.collider; // foci = d3.map({}, function(d) { // return d.__key__ // }); // layout.sets().forEach(function(set) { // foci.set(set.__key__, set.center); // }) applier(force, packingConfig) .nodes(data) .links([]) .gravity(0) .charge(0) .size(size) .on('start', init) .on('tick', tick) function init(e) { data.forEach(function(d) { var center = sets.get(d.__setKey__).center; d.x = d.x ? d.x * 1 : center.x; d.y = d.y ? d.y * 1 : center.y; }) } function tick(e) { var ticker; data .forEach(gravity(.2 * e.alpha)) if(collider) { data .forEach(collide(.5)) } if (ticker = force.ticker()) { ticker(layout) } } // Move nodes toward cluster focus. function gravity(alpha) { return function(d) { var center = sets.get(d.__setKey__).center; d.y += (center.y - d.y) * alpha; d.x += (center.x - d.x) * alpha; }; } // Resolve collisions between nodes. function collide(alpha) { var quadtree = d3.geom.quadtree(data); return function(d) { var r = d.r + maxRadius + padding, nx1 = d.x - r, nx2 = d.x + r, ny1 = d.y - r, ny2 = d.y + r; quadtree.visit(function(quad, x1, y1, x2, y2) { if (quad.point && (quad.point !== d)) { var x = d.x - quad.point.x, y = d.y - quad.point.y, l = Math.sqrt(x * x + y * y), r = d.r + quad.point.r + (d.__setKey__ !== quad.point.__setKey__) * padding; if (l < r) { l = (l - r) / l * alpha; d.x -= x *= l; d.y -= y *= l; quad.point.x += x; quad.point.y += y; } } return x1 > nx2 || x2 < nx1 || y1 > ny2 || y2 < ny1; }); }; } return force; } /** finds the zeros of a function, given two starting points (which must * have opposite signs */ function bisect (f, a, b, parameters) { parameters = parameters || {}; var maxIterations = parameters.maxIterations || 100, tolerance = parameters.tolerance || 1e-10, fA = f(a), fB = f(b), delta = b - a; if (fA * fB > 0) { throw "Initial bisect points must have opposite signs"; } if (fA === 0) return a; if (fB === 0) return b; for (var i = 0; i < maxIterations; ++i) { delta /= 2; var mid = a + delta, fMid = f(mid); if (fMid * fA >= 0) { a = mid; } if ((Math.abs(delta) < tolerance) || (fMid === 0)) { return mid; } } return a + delta; } // need some basic operations on vectors, rather than adding a dependency, // just define here function zeros(x) { var r = new Array(x); for (var i = 0; i < x; ++i) { r[i] = 0; } return r; } function zerosM(x, y) { return zeros(x).map(function() { return zeros(y); }); } function dot(a, b) { var ret = 0; for (var i = 0; i < a.length; ++i) { ret += a[i] * b[i]; } return ret; } function norm2(a) { return Math.sqrt(dot(a, a)); } function multiplyBy(a, c) { for (var i = 0; i < a.length; ++i) { a[i] *= c; } } function weightedSum(ret, w1, v1, w2, v2) { for (var j = 0; j < ret.length; ++j) { ret[j] = w1 * v1[j] + w2 * v2[j]; } } /** minimizes a function using the downhill simplex method */ function fmin(f, x0, parameters) { parameters = parameters || {}; var maxIterations = parameters.maxIterations || x0.length * 200, nonZeroDelta = parameters.nonZeroDelta || 1.1, zeroDelta = parameters.zeroDelta || 0.001, minErrorDelta = parameters.minErrorDelta || 1e-6, rho = parameters.rho || 1, chi = parameters.chi || 2, psi = parameters.psi || -0.5, sigma = parameters.sigma || 0.5, callback = parameters.callback, temp; // initialize simplex. var N = x0.length, simplex = new Array(N + 1); simplex[0] = x0; simplex[0].fx = f(x0); for (var i = 0; i < N; ++i) { var point = x0.slice(); point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta; simplex[i + 1] = point; simplex[i + 1].fx = f(point); } var sortOrder = function(a, b) { return a.fx - b.fx; }; var centroid = x0.slice(), reflected = x0.slice(), contracted = x0.slice(), expanded = x0.slice(); for (var iteration = 0; iteration < maxIterations; ++iteration) { simplex.sort(sortOrder); if (callback) { callback(simplex); } if (Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) { break; } // compute the centroid of all but the worst point in the simplex for (i = 0; i < N; ++i) { centroid[i] = 0; for (var j = 0; j < N; ++j) { centroid[i] += simplex[j][i]; } centroid[i] /= N; } // reflect the worst point past the centroid and compute loss at reflected // point var worst = simplex[N]; weightedSum(reflected, 1 + rho, centroid, -rho, worst); reflected.fx = f(reflected); // if the reflected point is the best seen, then possibly expand if (reflected.fx <= simplex[0].fx) { weightedSum(expanded, 1 + chi, centroid, -chi, worst); expanded.fx = f(expanded); if (expanded.fx < reflected.fx) { temp = simplex[N]; simplex[N] = expanded; expanded = temp; } else { temp = simplex[N]; simplex[N] = reflected; reflected = temp; } } // if the reflected point is worse than the second worst, we need to // contract else if (reflected.fx >= simplex[N - 1].fx) { var shouldReduce = false; if (reflected.fx <= worst.fx) { // do an inside contraction weightedSum(contracted, 1 + psi, centroid, -psi, worst); contracted.fx = f(contracted); if (contracted.fx < worst.fx) { temp = simplex[N]; simplex[N] = contracted; contracted = temp; } else { shouldReduce = true; } } else { // do an outside contraction weightedSum(contracted, 1 - psi * rho, centroid, psi * rho, worst); contracted.fx = f(contracted); if (contracted.fx <= reflected.fx) { temp = simplex[N]; simplex[N] = contracted; contracted = temp; } else { shouldReduce = true; } } if (shouldReduce) { // do reduction. doesn't actually happen that often for (i = 1; i < simplex.length; ++i) { weightedSum(simplex[i], 1 - sigma, simplex[0], sigma - 1, simplex[i]); simplex[i].fx = f(simplex[i]); } } } else { temp = simplex[N]; simplex[N] = reflected; reflected = temp; } } simplex.sort(sortOrder); return { f: simplex[0].fx, solution: simplex[0] }; } function minimizeConjugateGradient( f, initial, params) { // allocate all memory up front here, keep out of the loop for perfomance // reasons var current = { x: initial.slice(), fx: 0, fxprime: initial.slice() }, next = { x: initial.slice(), fx: 0, fxprime: initial.slice() }, yk = initial.slice(), pk, temp, a = 1, maxIterations; params = params || {}; maxIterations = params.maxIterations || initial.length * 5; current.fx = f(current.x, current.fxprime); pk = current.fxprime.slice(); multiplyBy(pk, -1); for (var i = 0; i < maxIterations; ++i) { if (params.history) { params.history.push({ x: current.x.slice(), fx: current.fx, fxprime: current.fxprime.slice() }); } a = wolfeLineSearch(f, pk, current, next, a); if (!a) { // faiiled to find point that satifies wolfe conditions. // reset direction for next iteration for (var j = 0; j < pk.length; ++j) { pk[j] = -1 * current.fxprime[j]; } } else { // update direction using Polak–Ribiere CG method weightedSum(yk, 1, next.fxprime, -1, current.fxprime); var delta_k = dot(current.fxprime, current.fxprime), beta_k = Math.max(0, dot(yk, next.fxprime) / delta_k); weightedSum(pk, beta_k, pk, -1, next.fxprime); temp = current; current = next; next = temp; } if (norm2(current.fxprime) <= 1e-5) { break; } } if (params.history) { params.history.push({ x: current.x.slice(), fx: current.fx, fxprime: current.fxprime.slice() }); } return current; } var c1 = 1e-6; var c2 = 0.1; /// searches along line 'pk' for a point that satifies the wolfe conditions /// See 'Numerical Optimization' by Nocedal and Wright p59-60 function wolfeLineSearch( f, pk, current, next, a) { var phi0 = current.fx, phiPrime0 = dot(current.fxprime, pk), phi = phi0, phi_old = phi0, phiPrime = phiPrime0, a0 = 0; a = a || 1; function zoom(a_lo, a_high, phi_lo) { for (var iteration = 0; iteration < 16; ++iteration) { a = (a_lo + a_high) / 2; weightedSum(next.x, 1.0, current.x, a, pk); phi = next.fx = f(next.x, next.fxprime); phiPrime = dot(next.fxprime, pk); if ((phi > (phi0 + c1 * a * phiPrime0)) || (phi >= phi_lo)) { a_high = a; } else { if (Math.abs(phiPrime) <= -c2 * phiPrime0) { return a; } if (phiPrime * (a_high - a_lo) >= 0) { a_high = a_lo; } a_lo = a; phi_lo = phi; } } return 0; } for (var iteration = 0; iteration < 10; ++iteration) { weightedSum(next.x, 1.0, current.x, a, pk); phi = next.fx = f(next.x, next.fxprime); phiPrime = dot(next.fxprime, pk); if ((phi > (phi0 + c1 * a * phiPrime0)) || (iteration && (phi >= phi_old))) { return zoom(a0, a, phi_old); } if (Math.abs(phiPrime) <= -c2 * phiPrime0) { return a; } if (phiPrime >= 0) { return zoom(a, a0, phi); } phi_old = phi; a0 = a; a *= 2; } return 0; } /** given a list of set objects, and their corresponding overlaps. updates the (x, y, radius) attribute on each set such that their positions roughly correspond to the desired overlaps */ function venn$2(areas, parameters) { parameters = parameters || {}; parameters.maxIterations = parameters.maxIterations || 500; var lossFn = parameters.lossFunction || lossFunction; var initialLayout = parameters.initialLayout || bestInitialLayout; var fminFn = parameters.fmin || fmin; // add in missing pairwise areas as having 0 size areas = addMissingAreas(areas); // initial layout is done greedily var circles = initialLayout(areas); // transform x/y coordinates to a vector to optimize var initial = [], setids = [], setid; for (setid in circles) { if (circles.hasOwnProperty(setid)) { initial.push(circles[setid].x); initial.push(circles[setid].y); setids.push(setid); } } // optimize initial layout from our loss function var totalFunctionCalls = 0; var solution = fminFn( function(values) { totalFunctionCalls += 1; var current = {}; for (var i = 0; i < setids.length; ++i) { var setid = setids[i]; current[setid] = { x: values[2 * i], y: values[2 * i + 1], radius: circles[setid].radius, // size : circles[setid].size }; } return lossFn(current, areas); }, initial, parameters); // transform solution vector back to x/y points var positions = solution.solution; for (var i = 0; i < setids.length; ++i) { setid = setids[i]; circles[setid].x = positions[2 * i]; circles[setid].y = positions[2 * i + 1]; } return circles; } /** Returns the distance necessary for two circles of radius r1 + r2 to have the overlap area 'overlap' */ function distanceFromIntersectArea(r1, r2, overlap) { // handle complete overlapped circles if (Math.min(r1, r2) * Math.min(r1, r2) * Math.PI <= overlap + SMALL) { return Math.abs(r1 - r2); } return bisect(function(distance) { return circleOverlap(r1, r2, distance) - overlap; }, 0, r1 + r2); } /** Missing pair-wise intersection area data can cause problems: treating as an unknown means that sets will be laid out overlapping, which isn't what people expect. To reflect that we want disjoint sets here, set the overlap to 0 for all missing pairwise set intersections */ function addMissingAreas(areas) { areas = areas.slice(); // two circle intersections that aren't defined var ids = [], pairs = {}, i, j, a, b; for (i = 0; i < areas.length; ++i) { var area = areas[i]; if (area.sets.length == 1) { ids.push(area.sets[0]); } else if (area.sets.length == 2) { a = area.sets[0]; b = area.sets[1]; pairs[[a, b]] = true; pairs[[b, a]] = true; } } ids.sort(function(a, b) { return a > b; }); for (i = 0; i < ids.length; ++i) { a = ids[i]; for (j = i + 1; j < ids.length; ++j) { b = ids[j]; if (!([a, b] in pairs)) { areas.push({ 'sets': [a, b], 'size': 0 }); } } } return areas; } /// Returns two matrices, one of the euclidean distances between the sets /// and the other indicating if there are subset or disjoint set relationships function getDistanceMatrices(areas, sets, setids) { // initialize an empty distance matrix between all the points var distances = zerosM(sets.length, sets.length), constraints = zerosM(sets.length, sets.length); // compute required distances between all the sets such that // the areas match areas.filter(function(x) { return x.sets.length == 2; }) .map(function(current) { var left = setids[current.sets[0]], right = setids[current.sets[1]], r1 = Math.sqrt(sets[left].size / Math.PI), r2 = Math.sqrt(sets[right].size / Math.PI), distance = distanceFromIntersectArea(r1, r2, current.size); distances[left][right] = distances[right][left] = distance; // also update constraints to indicate if its a subset or disjoint // relationship var c = 0; if (current.size + 1e-10 >= Math.min(sets[left].size, sets[right].size)) { c = 1; } else if (current.size <= 1e-10) { c = -1; } constraints[left][right] = constraints[right][left] = c; }); return { distances: distances, constraints: constraints }; } /// computes the gradient and loss simulatenously for our constrained MDS optimizer function constrainedMDSGradient(x, fxprime, distances, constraints) { var loss = 0, i; for (i = 0; i < fxprime.length; ++i) { fxprime[i] = 0; } for (i = 0; i < distances.length; ++i) { var xi = x[2 * i], yi = x[2 * i + 1]; for (var j = i + 1; j < distances.length; ++j) { var xj = x[2 * j], yj = x[2 * j + 1], dij = distances[i][j], constraint = constraints[i][j]; var squaredDistance = (xj - xi) * (xj - xi) + (yj - yi) * (yj - yi), distance = Math.sqrt(squaredDistance), delta = squaredDistance - dij * dij; if (((constraint > 0) && (distance <= dij)) || ((constraint < 0) && (distance >= dij))) { continue; } loss += 2 * delta * delta; fxprime[2 * i] += 4 * delta * (xi - xj); fxprime[2 * i + 1] += 4 * delta * (yi - yj); fxprime[2 * j] += 4 * delta * (xj - xi); fxprime[2 * j + 1] += 4 * delta * (yj - yi); } } return loss; } /// takes the best working variant of either constrained MDS or greedy function bestInitialLayout(areas, params) { var initial = greedyLayout(areas, params); // greedylayout is sufficient for all 2/3 circle cases. try out // constrained MDS for higher order problems, take its output // if it outperforms. (greedy is aesthetically better on 2/3 circles // since it axis aligns) if (areas.length >= 8) { var constrained = constrainedMDSLayout(areas, params), constrainedLoss = lossFunction(constrained, areas), greedyLoss = lossFunction(initial, areas); if (constrainedLoss + 1e-8 < greedyLoss) { initial = constrained; } } return initial; } /// use the constrained MDS variant to generate an initial layout function constrainedMDSLayout(areas, params) { params = params || {}; var restarts = params.restarts || 10; // bidirectionally map sets to a rowid (so we can create a matrix) var sets = [], setids = {}, i; for (i = 0; i < areas.length; ++i) { var area = areas[i]; if (area.sets.length == 1) { setids[area.sets[0]] = sets.length; sets.push(area); } } var matrices = getDistanceMatrices(areas, sets, setids), distances = matrices.distances, constraints = matrices.constraints; // keep distances bounded, things get messed up otherwise. // TODO: proper preconditioner? var norm = norm2(distances.map(norm2)) / (distances.length); distances = distances.map(function(row) { return row.map(function(value) { return value / norm; }); }); var obj = function(x, fxprime) { return constrainedMDSGradient(x, fxprime, distances, constraints); }; var best, current; for (i = 0; i < restarts; ++i) { var initial = zeros(distances.length * 2).map(Math.random); current = minimizeConjugateGradient(obj, initial, params); if (!best || (current.fx < best.fx)) { best = current; } } var positions = best.x; // translate rows back to (x,y,radius) coordinates var circles = {}; for (i = 0; i < sets.length; ++i) { var set = sets[i]; circles[set.sets[0]] = { x: positions[2 * i] * norm, y: positions[2 * i + 1] * norm, radius: Math.sqrt(set.size / Math.PI) }; } if (params.history) { for (i = 0; i < params.history.length; ++i) { multiplyBy(params.history[i].x, norm); } } return circles; } /** Lays out a Venn diagram greedily, going from most overlapped sets to least overlapped, attempting to position each new set such that the overlapping areas to already positioned sets are basically right */ function greedyLayout(areas) { // define a circle for each set var circles = {}, setOverlaps = {}, set; for (var i = 0; i < areas.length; ++i) { var area = areas[i]; if (area.sets.length == 1) { set = area.sets[0]; circles[set] = { x: 1e10, y: 1e10, rowid: circles.length, size: area.size, radius: Math.sqrt(area.size / Math.PI) }; setOverlaps[set] = []; } } areas = areas.filter(function(a) { return a.sets.length == 2; }); // map each set to a list of all the other sets that overlap it for (i = 0; i < areas.length; ++i) { var current = areas[i]; var weight = current.hasOwnProperty('weight') ? current.weight : 1.0; var left = current.sets[0], right = current.sets[1]; // completely overlapped circles shouldn't be positioned early here if (current.size + SMALL >= Math.min(circles[left].size, circles[right].size)) { weight = 0; } setOverlaps[left].push({ set: right, size: current.size, weight: weight }); setOverlaps[right].push({ set: left, size: current.size, weight: weight }); } // get list of most overlapped sets var mostOverlapped = []; for (set in setOverlaps) { if (setOverlaps.hasOwnProperty(set)) { var size = 0; for (i = 0; i < setOverlaps[set].length; ++i) { size += setOverlaps[set][i].size * setOverlaps[set][i].weight; } mostOverlapped.push({ set: set, size: size }); } } // sort by size desc function sortOrder(a, b) { return b.size - a.size; } mostOverlapped.sort(sortOrder); // keep track of what sets have been laid out var positioned = {}; function isPositioned(element) { return element.set in positioned; } // adds a point to the output function positionSet(point, index) { circles[index].x = point.x; circles[index].y = point.y; positioned[index] = true; } // add most overlapped set at (0,0) positionSet({ x: 0, y: 0 }, mostOverlapped[0].set); // get distances between all points. TODO, necessary? // answer: probably not // var distances = venn.getDistanceMatrices(circles, areas).distances; for (i = 1; i < mostOverlapped.length; ++i) { var setIndex = mostOverlapped[i].set, overlap = setOverlaps[setIndex].filter(isPositioned); set = circles[setIndex]; overlap.sort(sortOrder); if (overlap.length === 0) { // this shouldn't happen anymore with addMissingAreas throw "ERROR: missing pairwise overlap information"; } var points = []; for (var j = 0; j < overlap.length; ++j) { // get appropriate distance from most overlapped already added set var p1 = circles[overlap[j].set], d1 = distanceFromIntersectArea(set.radius, p1.radius, overlap[j].size); // sample positions at 90 degrees for maximum aesthetics points.push({ x: p1.x + d1, y: p1.y }); points.push({ x: p1.x - d1, y: p1.y }); points.push({ y: p1.y + d1, x: p1.x }); points.push({ y: p1.y - d1, x: p1.x }); // if we have at least 2 overlaps, then figure out where the // set should be positioned analytically and try those too for (var k = j + 1; k < overlap.length; ++k) { var p2 = circles[overlap[k].set], d2 = distanceFromIntersectArea(set.radius, p2.radius, overlap[k].size); var extraPoints = circleCircleIntersection({ x: p1.x, y: p1.y, radius: d1 }, { x: p2.x, y: p2.y, radius: d2 }); for (var l = 0; l < extraPoints.length; ++l) { points.push(extraPoints[l]); } } } // we have some candidate positions for the set, examine loss // at each position to figure out where to put it at var bestLoss = 1e50, bestPoint = points[0]; for (j = 0; j < points.length; ++j) { circles[setIndex].x = points[j].x; circles[setIndex].y = points[j].y; var loss = lossFunction(circles, areas); if (loss < bestLoss) { bestLoss = loss; bestPoint = points[j]; } } positionSet(bestPoint, setIndex); } return circles; } /// Uses multidimensional scaling to approximate a first layout here // function classicMDSLayout(areas) { // // bidirectionally map sets to a rowid (so we can create a matrix) // var sets = [], // setids = {}; // for (var i = 0; i < areas.length; ++i) { // var area = areas[i]; // if (area.sets.length == 1) { // setids[area.sets[0]] = sets.length; // sets.push(area); // } // } // // get the distance matrix, and use to position sets // var distances = getDistanceMatrices(areas, sets, setids).distances; // var positions = mds.classic(distances); // // translate rows back to (x,y,radius) coordinates // var circles = {}; // for (i = 0; i < sets.length; ++i) { // var set = sets[i]; // circles[set.sets[0]] = { // x: positions[i][0], // y: positions[i][1], // radius: Math.sqrt(set.size / Math.PI) // }; // } // return circles; // }; /** Given a bunch of sets, and the desired overlaps between these sets - computes the distance from the actual overlaps to the desired overlaps. Note that this method ignores overlaps of more than 2 circles */ function lossFunction(sets, overlaps) { var output = 0; function getCircles(indices) { return indices.map(function(i) { return sets[i]; }); } for (var i = 0; i < overlaps.length; ++i) { var area = overlaps[i], overlap; if (area.sets.length == 1) { continue; } else if (area.sets.length == 2) { var left = sets[area.sets[0]], right = sets[area.sets[1]]; overlap = circleOverlap(left.radius, right.radius, distance(left, right)); } else { overlap = intersectionArea(getCircles(area.sets)); } var weight = area.hasOwnProperty('weight') ? area.weight : 1.0; output += weight * (overlap - area.size) * (overlap - area.size); } return output; } // orientates a bunch of circles to point in orientation function orientateCircles(circles, orientation) { // sort circles by size circles.sort(function(a, b) { return b.radius - a.radius; }); var i; // shift circles so largest circle is at (0, 0) if (circles.length > 0) { var largestX = circles[0].x, largestY = circles[0].y; for (i = 0; i < circles.length; ++i) { circles[i].x -= largestX; circles[i].y -= largestY; } } // rotate circles so that second largest is at an angle of 'orientation' // from largest if (circles.length > 1) { var rotation = Math.atan2(circles[1].x, circles[1].y) - orientation, c = Math.cos(rotation), s = Math.sin(rotation), x, y; for (i = 0; i < circles.length; ++i) { x = circles[i].x; y = circles[i].y; circles[i].x = c * x - s * y; circles[i].y = s * x + c * y; } } // mirror solution if third solution is above plane specified by // first two circles if (circles.length > 2) { var angle = Math.atan2(circles[2].x, circles[2].y) - orientation; while (angle < 0) { angle += 2 * Math.PI; } while (angle > 2 * Math.PI) { angle -= 2 * Math.PI; } if (angle > Math.PI) { var slope = circles[1].y / (1e-10 + circles[1].x); for (i = 0; i < circles.length; ++i) { var d = (circles[i].x + slope * circles[i].y) / (1 + slope * slope); circles[i].x = 2 * d - circles[i].x; circles[i].y = 2 * d * slope - circles[i].y; } } } } function disjointCluster(circles) { // union-find clustering to get disjoint sets circles.map(function(circle) { circle.parent = circle; }); // path compression step in union find function find(circle) { if (circle.parent !== circle) { circle.parent = find(circle.parent); } return circle.parent; } function union(x, y) { var xRoot = find(x), yRoot = find(y); xRoot.parent = yRoot; } // get the union of all overlapping sets for (var i = 0; i < circles.length; ++i) { for (var j = i + 1; j < circles.length; ++j) { var maxDistance = circles[i].radius + circles[j].radius; if (distance(circles[i], circles[j]) + 1e-10 < maxDistance) { union(circles[j], circles[i]); } } } // find all the disjoint clusters and group them together var disjointClst = {}, setid; for (i = 0; i < circles.length; ++i) { setid = find(circles[i]).parent.setid; if (!(setid in disjointClst)) { disjointClst[setid] = []; } disjointClst[setid].push(circles[i]); } // cleanup bookkeeping circles.map(function(circle) { delete circle.parent; }); // return in more usable form var ret = []; for (setid in disjointClst) { if (disjointClst.hasOwnProperty(setid)) { ret.push(disjointClst[setid]); } } return ret; } function getBoundingBox(circles) { var minMax = function(d) { var hi = Math.max.apply(null, circles.map( function(c) { return c[d] + c.radius; })), lo = Math.min.apply(null, circles.map( function(c) { return c[d] - c.radius; })); return { max: hi, min: lo }; }; return { xRange: minMax('x'), yRange: minMax('y') }; } function normalizeSolution(solution, orientation) { orientation = orientation || Math.PI / 2; // work with a list instead of a dictionary, and take a copy so we // don't mutate input var circles = [], i, setid; for (setid in solution) { if (solution.hasOwnProperty(setid)) { var previous = solution[setid]; circles.push({ x: previous.x, y: previous.y, radius: previous.radius, setid: setid }); } } // get all the disjoint clusters var clusters = disjointCluster(circles); // orientate all disjoint sets, get sizes for (i = 0; i < clusters.length; ++i) { orientateCircles(clusters[i], orientation); var bounds = getBoundingBox(clusters[i]); clusters[i].size = (bounds.xRange.max - bounds.xRange.min) * (bounds.yRange.max - bounds.yRange.min); clusters[i].bounds = bounds; } clusters.sort(function(a, b) { return b.size - a.size; }); // orientate the largest at 0,0, and get the bounds circles = clusters[0]; var returnBounds = circles.bounds; var spacing = (returnBounds.xRange.max - returnBounds.xRange.min) / 50; function addCluster(cluster, right, bottom) { if (!cluster) return; var bounds = cluster.bounds, xOffset, yOffset, centreing; if (right) { xOffset = returnBounds.xRange.max - bounds.xRange.min + spacing; } else { xOffset = returnBounds.xRange.max - bounds.xRange.max - spacing; centreing = (bounds.xRange.max - bounds.xRange.min) / 2 - (returnBounds.xRange.max - returnBounds.xRange.min) / 2; if (centreing < 0) xOffset += centreing; } if (bottom) { yOffset = returnBounds.yRange.max - bounds.yRange.min + spacing; } else { yOffset = returnBounds.yRange.max - bounds.yRange.max - spacing; centreing = (bounds.yRange.max - bounds.yRange.min) / 2 - (returnBounds.yRange.max - returnBounds.yRange.min) / 2; if (centreing < 0) yOffset += centreing; } for (var j = 0; j < cluster.length; ++j) { cluster[j].x += xOffset; cluster[j].y += yOffset; circles.push(cluster[j]); } } var index = 1; while (index < clusters.length) { addCluster(clusters[index], true, false); addCluster(clusters[index + 1], false, true); addCluster(clusters[index + 2], true, true); index += 3; // have one cluster (in top left). lay out next three relative // to it in a grid returnBounds = getBoundingBox(circles); } // convert back to solution form var ret = {}; for (i = 0; i < circles.length; ++i) { ret[circles[i].setid] = circles[i]; } return ret; } /** Scales a solution from venn.venn or venn.greedyLayout such that it fits in a rectangle of width/height - with padding around the borders. also centers the diagram in the available space at the same time */ function scaleSolution(solution, width, height, padding) { var circles = [], setids = []; for (var setid in solution) { if (solution.hasOwnProperty(setid)) { setids.push(setid); circles.push(solution[setid]); } } width -= 2 * padding; height -= 2 * padding; var bounds = getBoundingBox(circles), xRange = bounds.xRange, yRange = bounds.yRange, xScaling = width / (xRange.max - xRange.min), yScaling = height / (yRange.max - yRange.min), scaling = Math.min(yScaling, xScaling), // while we're at it, center the diagram too xOffset = (width - (xRange.max - xRange.min) * scaling) / 2, yOffset = (height - (yRange.max - yRange.min) * scaling) / 2; var scaled = {}; for (var i = 0; i < circles.length; ++i) { var circle = circles[i]; scaled[setids[i]] = { radius: scaling * circle.radius, x: padding + xOffset + (circle.x - xRange.min) * scaling, y: padding + yOffset + (circle.y - yRange.min) * scaling, }; } return scaled; } function circleMargin(current, interior, exterior) { var margin = interior[0].radius - distance(interior[0], current), i, m; for (i = 1; i < interior.length; ++i) { m = interior[i].radius - distance(interior[i], current); if (m <= margin) { margin = m; } } for (i = 0; i < exterior.length; ++i) { m = distance(exterior[i], current) - exterior[i].radius; if (m <= margin) { margin = m; } } return margin; } // compute the center of some circles by maximizing the margin of // the center point relative to the circles (interior) after subtracting // nearby circles (exterior) function computeTextCentre(interior, exterior) { // get an initial estimate by sampling around the interior circles // and taking the point with the biggest margin var points = [], i; for (i = 0; i < interior.length; ++i) { var c = interior[i]; points.push({ x: c.x, y: c.y }); points.push({ x: c.x + c.radius / 2, y: c.y }); points.push({ x: c.x - c.radius / 2, y: c.y }); points.push({ x: c.x, y: c.y + c.radius / 2 }); points.push({ x: c.x, y: c.y - c.radius / 2 }); } var initial = points[0], margin = circleMargin(points[0], interior, exterior); for (i = 1; i < points.length; ++i) { var m = circleMargin(points[i], interior, exterior); if (m >= margin) { initial = points[i]; margin = m; } } // maximize the margin numerically var solution = fmin( function(p) { return -1 * circleMargin({ x: p[0], y: p[1] }, interior, exterior); }, [initial.x, initial.y], { maxIterations: 500, minErrorDelta: 1e-10 }).solution; var ret = { x: solution[0], y: solution[1] }; // check solution, fallback as needed (happens if fully overlapped // etc) var valid = true; for (i = 0; i < interior.length; ++i) { if (distance(ret, interior[i]) > interior[i].radius) { valid = false; break; } } for (i = 0; i < exterior.length; ++i) { if (distance(ret, exterior[i]) < exterior[i].radius) { valid = false; break; } } if (!valid) { if (interior.length == 1) { ret = { x: interior[0].x, y: interior[0].y }; } else { var areaStats = {}; intersectionArea(interior, areaStats); if (areaStats.arcs.length === 0) { ret = { 'x': 0, 'y': -1000, disjoint: true }; } else if (areaStats.arcs.length == 1) { ret = { 'x': areaStats.arcs[0].circle.x, 'y': areaStats.arcs[0].circle.y }; } else if (exterior.length) { // try again without other circles ret = computeTextCentre(interior, []); } else { // take average of all the points in the intersection // polygon. this should basically never happen // and has some issues: // https://github.com/benfred/venn.js/issues/48#issuecomment-146069777 ret = getCenter(areaStats.arcs.map(function(a) { return a.p1; })); } } } return ret; } // given a dictionary of {setid : circle}, returns // a dictionary of setid to list of circles that completely overlap it function getOverlappingCircles(circles) { var ret = {}, circleids = []; for (var circleid in circles) { circleids.push(circleid); ret[circleid] = []; } for (var i = 0; i < circleids.length; i++) { var a = circles[circleids[i]]; for (var j = i + 1; j < circleids.length; ++j) { var b = circles[circleids[j]], d = distance(a, b); if (d + b.radius <= a.radius + 1e-10) { ret[circleids[j]].push(circleids[i]); } else if (d + a.radius <= b.radius + 1e-10) { ret[circleids[i]].push(circleids[j]); } } } return ret; } function computeTextCentres(circles, areas) { var ret = {}, overlapped = getOverlappingCircles(circles); for (var i = 0; i < areas.length; ++i) { var area = areas[i].sets, areaids = {}, exclude = {}; for (var j = 0; j < area.length; ++j) { areaids[area[j]] = true; var overlaps = overlapped[area[j]]; // keep track of any circles that overlap this area, // and don't consider for purposes of computing the text // centre for (var k = 0; k < overlaps.length; ++k) { exclude[overlaps[k]] = true; } } var interior = [], exterior = []; for (var setid in circles) { if (setid in areaids) { interior.push(circles[setid]); } else if (!(setid in exclude)) { exterior.push(circles[setid]); } } var centre = computeTextCentre(interior, exterior); ret[area] = centre; if (centre.disjoint && (areas[i].size > 0)) { console.log("WARNING: area " + area + " not represented on screen"); } } return ret; } function circlePath(x, y, r) { var ret = []; ret.push("\nM", x, y); ret.push("\nm", -r, 0); ret.push("\na", r, r, 0, 1, 0, r * 2, 0); ret.push("\na", r, r, 0, 1, 0, -r * 2, 0); return ret.join(" "); } /** returns a svg path of the intersection area of a bunch of circles */ function intersectionAreaPath(circles) { var stats = {}; intersectionArea(circles, stats); var arcs = stats.arcs; if (arcs.length === 0) { return "M 0 0"; } else if (arcs.length == 1) { var circle = arcs[0].circle; return circlePath(circle.x, circle.y, circle.radius); } else { // draw path around arcs var ret = ["\nM", arcs[0].p2.x, arcs[0].p2.y]; for (var i = 0; i < arcs.length; ++i) { var arc = arcs[i], r = arc.circle.radius, wide = arc.width > r; ret.push("\nA", r, r, 0, wide ? 1 : 0, 1, arc.p1.x, arc.p1.y); } return ret.join(" "); } } function venn$1() { // d3.layout.venn = function() { var opts = { sets: null, setsAccessor: setsAccessorFn, setsSize: setsSize, packingStragegy: pack, packingConfig: { value: valueFn, }, size: [1, 1], padding: 15, // options from venn (https://github.com/benfred/venn.js) layoutFunction: venn$2, orientation: Math.PI / 2, normalize: true }; var circles, nodes, packer, centres; // Build simple getter and setter Functions binder(venn, opts); //The layout function function venn(data) { if (!arguments.length) return nodes; nodes = compute(data); return venn; } function compute(data) { var sets = venn.sets(), setsValues, layout = venn.layoutFunction(), packingStragegy = venn.packingStragegy(), size = venn.size(), width = size[0], height = size[1], // normalizeSolution = normalizeSolution, // scaleSolution = scaleSolution, // computeTextCentres = computeTextCentres, solution, oldCircles; sets = extractSets(data); setsValues = sets.values() solution = layout(setsValues); console.info("data: ", data) console.info("sets: ", sets) if (venn.normalize()) { solution = normalizeSolution(solution, venn.orientation()); } oldCircles = circles; circles = scaleSolution(solution, width, height, venn.padding()); for (var k in oldCircles) { if (circles[k]) { circles[k].previous = oldCircles[k]; } } oldCircles = null; centres = computeTextCentres(circles, setsValues); // store intersectionAreaPath into sets sets.forEach(function(k,set) { set.d = pathTween(set); set.center = centres[k]; set.innerRadius = computeDistanceToCircles(set); // packingStragegy(set, valueFunction, circles); }); packer = packingStragegy(venn, data) function computeDistanceToCircles(set) { var sets = set.sets, center = set.center, // hasOneSet = set.length ==1, k, circle, dist, isInside, isOverlapp, candidate = Infinity; // if(sets.length ==1) { for (k in circles) { circle = circles[k]; isInside = sets.indexOf(k) > -1; isOverlapp = sets.indexOf(k) < -1 && checkOverlapp(sets, circle); dist = distance(center, circle); dist = isInside ? circle.radius - dist : isOverlapp ? dist - circle.radius : dist + circle.radius; if (dist < candidate) { candidate = dist; } } return candidate; } function checkOverlapp(sets, circle) { var i = 0, l = sets.length, c; for (i; i < l; i++) { c = circles[sets[i]]; if (distance(c, circle) < c.radius) { return true; } } return false; } // interpolate intersection area paths between previous and // current paths function pathTween(set) { return function(t) { var c = set.sets.map(function(set) { // var start = previous[set], var circle = circles[set]; var start = circle && circle["previous"], end = circle; if (!start) { start = { x: width / 2, y: height / 2, radius: 1 }; } if (!end) { end = { x: width / 2, y: height / 2, radius: 1 }; } if (t == 1 && circle) { circle["previous"] = end; } return { 'x': start.x * (1 - t) + end.x * t, 'y': start.y * (1 - t) + end.y * t, 'radius': start.radius * (1 - t) + end.radius * t }; }); return intersectionAreaPath(c); }; }; return data } // loop over data and build the set so that they comply with https://github.com/benfred/venn.js /* from data = [ {"set":["A"],"name":"node_0"}, {"set":["B"],"name":"node_1"}, {"set":["B","A"],"name":"node_2"} {"set":["B","A"],"name":"node_3"} ] to sets = [ {sets: ['A'], size: 1, nodes : ['node_0']}, {sets: ['B'], size: 1, nodes : ['node_1']}, {sets: ['A','B'], size: 2, nodes ['node_2', 'node_3']} ]; */ function extractSets(data) { var sets = d3.map({}, function(d) { return d.__key__ }), individualSets = d3.map(), accessor = venn.setsAccessor(), size = venn.setsSize(), set, s, key, i, n = data.length; for (i = -1; ++i < n;) { set = accessor(data[i]); if (set.length) { key = set.sort().join(','); //so taht we have the same key as in https://github.com/benfred/venn.js set.forEach(function(val) { if (s = individualSets.get(val)) { s.size += 1; // s.nodes.push([data[i]]); } else { individualSets.set(val, { __key__: val, size: 1, sets: [val], nodes: [] // nodes: [data[i]] }) } }); data[i].__setKey__ = key; if (s = sets.get(key)) { s.size++; s.nodes.push(data[i]); } else { sets.set(key, { __key__: key, sets: set, size: 1, nodes: [data[i]] }); } } } individualSets.forEach(function(k, v) { if (!sets.get(k)) { sets.set(k, v); } }); // reset the size for each set. sets.forEach(function(k, v) { v.size = size(v.size); }) // sets = sets.values(); venn.sets(sets); return sets; } function setsSize(size) { return size; } // data accessors function setsAccessorFn(d) { return d.set || []; } function valueFn(d) { return d.value; } venn.packingConfig = function(_) { var config = opts.packingConfig; if (!arguments.length) { return config; } for (var k in _) { config[k] = _[k] } if(packer) { applier(packer, _) } return venn; }; venn.packer = function() { return packer; } venn.circles = function() { return circles; }; venn.centres = function() { return centres; }; venn.nodes = venn; return venn; // return d3.rebind(venn, event, "on"); }; var version = "0.0.9"; exports.version = version; exports.venn = venn$1; exports.pack = pack; exports.distribute = distribute; exports.force = force; }));(function(target, cname, name) { if (target) { target[name] = this[cname] && this[cname][name]; for (var k in this[cname]) { if (k != name) { target[name][k] = this[cname][k]; } } delete this[cname]; } }(this.d3 && this.d3.layout, 'd3_venn', 'venn'));