This grouped bar chart is constructed from a CSV file storing the populations of different states by age group. The chart employs conventional margins and a number of D3 features:
xxxxxxxxxx
<style>
.axis .domain {
display: none;
}
</style>
<svg width="960" height="500"></svg>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script>
// Commented version of
// https://bl.ocks.org/mbostock/3887051
// Variables
var svg = d3.select("svg"),
margin = {top: 20, right: 20, bottom: 30, left: 40},
width = +svg.attr("width") - margin.left - margin.right,
height = +svg.attr("height") - margin.top - margin.bottom;
// SVG G to provide D3 Margin Convention
var g = svg.append("g").attr("transform", "translate(" + margin.left + "," + margin.top + ")");
// X0 (horizontal axis) represents the state categories
var x0 = d3.scaleBand()
.rangeRound([0, width])
.paddingInner(0.1);
// X1 (horizontal axis) represents the age group categories
var x1 = d3.scaleBand()
.padding(0.05);
// Y (vertical axis) represents the population in millions
var y = d3.scaleLinear()
.rangeRound([height, 0]);
// Z represents the color scheme to be used for the various age groups
var z = d3.scaleOrdinal()
.range(["#98abc5", "#8a89a6", "#7b6888", "#6b486b", "#a05d56", "#d0743c", "#ff8c00"]);
// Define variable to give us access to AJAX callback function data
var outsideData;
// CSV AJAX call to ingest data
// data file requested: data.csv
// function to process data: function(d, i, columns) {...}
// function to be used on call back: function(error, data) {...}
d3.csv("data.csv", function(d, i, columns) {
for (var i = 1, n = columns.length; i < n; ++i) d[columns[i]] = +d[columns[i]];
return d;
}, function(error, data) {
if (error) throw error;
// assign internal data variable to outsideData variable so we can see data
// once the AJAX callback function has been run.
outsideData = data;
// Get the keys by taking a slice off of the column headings
// (means remove the element 0, and return array from index 1 to end)
// Returns array containing:
// "Under 5 Years", "5 to 13 Years", "14 to 17 Years",
// "18 to 24 Years", "25 to 44 Years", "45 to 64 Years",
// "65 Years and Over"
var keys = data.columns.slice(1);
// Finish defining the X0 (horizontal) state categories scale
x0.domain(data.map(function(d) { return d.State; }));
// Finish defining the X1 (horizontal) state categories scale
// Use the bandwidth of each state to set to range of x1
// The rounding gives a nice visual effect
x1.domain(keys).rangeRound([0, x0.bandwidth()]);
// Finish defining the Y axis
// Note the following:
// - d3.max(data...)
// - d3.max(keys, ...)
// => Think of it as a nested for loop
// => loop through each state and then within each state loop through each age group
y.domain([0, d3.max(data, function(d) { return d3.max(keys, function(key) { return d[key]; }); })]).nice();
// Double Data Join
// First data join will give us the states
// - Each g receives state and age group object
// Second data join will give us the rectangles
// - Within the data join, we build a new object from scratch
// - These will be the specific age groups
// - Each rectangle receives the specific age group per state
// - By the end of this, we have a small bar chart for each agre group.
g.append("g")
.selectAll("g")
.data(data)
.enter().append("g")
.attr("transform", function(d) { return "translate(" + x0(d.State) + ",0)"; })
.selectAll("rect")
.data(function(d) { return keys.map(function(key) { return {key: key, value: d[key]}; }); })
.enter().append("rect")
.attr("x", function(d) { return x1(d.key); })
.attr("y", function(d) { return y(d.value); })
.attr("width", x1.bandwidth())
.attr("height", function(d) { return height - y(d.value); })
.attr("fill", function(d) { return z(d.key); });
// Create the X Axis
g.append("g")
.attr("class", "axis")
.attr("transform", "translate(0," + height + ")")
.call(d3.axisBottom(x0));
// Create the Y Axis
g.append("g")
.attr("class", "axis")
.call(d3.axisLeft(y).ticks(null, "s"))
.append("text")
.attr("x", 2)
.attr("y", y(y.ticks().pop()) + 0.5)
.attr("dy", "0.32em")
.attr("fill", "#000")
.attr("font-weight", "bold")
.attr("text-anchor", "start")
.text("Population");
// Create the legend g's
// Note the data join
// Note the transform translate based on the selection element index
var legend = g.append("g")
.attr("font-family", "sans-serif")
.attr("font-size", 10)
.attr("text-anchor", "end")
.selectAll("g")
.data(keys.slice().reverse())
.enter().append("g")
.attr("transform", function(d, i) { return "translate(0," + i * 20 + ")"; });
// Create rectangles for each legend g
// Pass rect index to Z color ordinal scale
legend.append("rect")
.attr("x", width - 19)
.attr("width", 19)
.attr("height", 19)
.attr("fill", z);
// Create text for each legend g
// Use the data that it inherts to create the SVG text
legend.append("text")
.attr("x", width - 24)
.attr("y", 9.5)
.attr("dy", "0.32em")
.text(function(d) { return d; });
});
</script>
https://d3js.org/d3.v4.min.js