Name: Srinivas Havanur
Assignment: CS 725 - VI10 submission
Course: Information Visualization
Semester: Spring 2016
Description: The graph shown above is the scatterplot matrix which is mainly used to determine the linear correlation between multiple attributes. Here four different attributes are used to determine correlation. They are Passing Attempts, Passing TD, Rushing Attempts, Rushing TD. Color coding is done based on 3 grouping conferences Big Five, Group of Five, Independent. Along with this, linked highlighting is implemented to compare the values for different attributes.
Design Choices made:
Initially, I thought of developing different scatterplots to compare the values using linked highlighting. I rejected this because, there are lot of rework involved to implement this type of visualization.
Second, I thought to implement small multiples to generate scatterplots, this would result into too many graphs so I rejected this.
Third, I wanted to implement detail on demand scatterplot but this was already implemented in the last assignment and hence rejected this design too.
xxxxxxxxxx
<meta charset="utf-8">
<style>
svg {
font: 10px sans-serif;
padding: 10px;
}
.axis,
.frame {
shape-rendering: crispEdges;
}
.axis line {
stroke: #ddd;
}
.axis path {
display: none;
}
.cell text {
font-weight: bold;
text-transform: capitalize;
}
.frame {
fill: none;
stroke: #aaa;
}
circle {
fill-opacity: .7;
}
circle.hidden {
fill: #ccc !important;
}
.extent {
fill: #000;
fill-opacity: .125;
stroke: #fff;
}
</style>
<body>
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var width = 1360,
size = 230,
padding = 20;
var x = d3.scale.linear()
.range([padding / 2, size - padding / 2]);
var y = d3.scale.linear()
.range([size - padding / 2, padding / 2]);
var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom")
.ticks(6);
var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(6);
var color = d3.scale.category10();
d3.csv("passing-stats-2014.csv", function(error, data) {
if (error) throw error;
var domainByTrait = {},
traits = d3.keys(data[0]).filter(function(d) { return d !== "Groupings"; }),
n = traits.length;
traits.forEach(function(trait) {
domainByTrait[trait] = d3.extent(data, function(d) { return d[trait]; });
});
xAxis.tickSize(size * n);
yAxis.tickSize(-size * n);
var brush = d3.svg.brush()
.x(x)
.y(y)
.on("brushstart", brushstart)
.on("brush", brushmove)
.on("brushend", brushend);
var svg = d3.select("body").append("svg")
.attr("width", size * n + padding)
.attr("height", size * n + padding)
.append("g")
.attr("transform", "translate(" + padding + "," + padding / 2 + ")");
svg.selectAll(".x.axis")
.data(traits)
.enter().append("g")
.attr("class", "x axis")
.attr("transform", function(d, i) { return "translate(" + (n - i - 1) * size + ",0)"; })
.each(function(d) { x.domain(domainByTrait[d]); d3.select(this).call(xAxis); });
svg.selectAll(".y.axis")
.data(traits)
.enter().append("g")
.attr("class", "y axis")
.attr("transform", function(d, i) { return "translate(0," + i * size + ")"; })
.each(function(d) { y.domain(domainByTrait[d]); d3.select(this).call(yAxis); });
var cell = svg.selectAll(".cell")
.data(cross(traits, traits))
.enter().append("g")
.attr("class", "cell")
.attr("transform", function(d) { return "translate(" + (n - d.i - 1) * size + "," + d.j * size + ")"; })
.each(plot);
// Titles for the diagonal.
cell.filter(function(d) { return d.i === d.j; }).append("text")
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(function(d) { return d.x; });
cell.call(brush);
function plot(p) {
var cell = d3.select(this);
x.domain(domainByTrait[p.x]);
y.domain(domainByTrait[p.y]);
cell.append("rect")
.attr("class", "frame")
.attr("x", padding / 2)
.attr("y", padding / 2)
.attr("width", size - padding)
.attr("height", size - padding);
cell.selectAll("circle")
.data(data)
.enter().append("circle")
.attr("cx", function(d) { return x(d[p.x]); })
.attr("cy", function(d) { return y(d[p.y]); })
.attr("r", 4)
.style("fill", function(d) { return color(d.Groupings); });
}
var brushCell;
// Clear the previously-active brush, if any.
function brushstart(p) {
if (brushCell !== this) {
d3.select(brushCell).call(brush.clear());
x.domain(domainByTrait[p.x]);
y.domain(domainByTrait[p.y]);
brushCell = this;
}
}
// Highlight the selected circles.
function brushmove(p) {
var e = brush.extent();
svg.selectAll("circle").classed("hidden", function(d) {
return e[0][0] > d[p.x] || d[p.x] > e[1][0]
|| e[0][1] > d[p.y] || d[p.y] > e[1][1];
});
}
// If the brush is empty, select all circles.
function brushend() {
if (brush.empty()) svg.selectAll(".hidden").classed("hidden", false);
}
d3.select(self.frameElement).style("height", size * n + padding + 20 + "px");
});
function cross(a, b) {
var c = [], n = a.length, m = b.length, i, j;
for (i = -1; ++i < n;) for (j = -1; ++j < m;) c.push({x: a[i], i: i, y: b[j], j: j});
return c;
}
</script>
https://d3js.org/d3.v3.min.js