D3
OG
Old school D3 from simpler times
All examples
By author
By category
About
timelyportfolio
Full window
Github gist
explore the intended and unintended consequences of fed and boj actions
<!DOCTYPE html> <!-- saved from url=(0014)about:internet --> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title>Intended Or Unintended Consequence</title> </head> <body> <h2>Intended Or Unintended Consequence</h2> <p>A quick glimpse at the US 10y Treasury Bond rate since 2000 seems benign with low volatility and a general downward trend.</p> <pre><code class="r">require(latticeExtra) require(quantmod) US10y <- getSymbols("^TNX", from = "2000-01-01", auto.assign = FALSE)[, 4] asTheEconomist(xyplot(US10y, scales = list(y = list(rot = 1)), main = "US 10y Yield Since 2000")) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-2"/> </p> <p>However, if we plot the change in rate over 252 days or 1 year, we might wonder whether the rate is as benign as we initially surmised. Although this might seem like an acceptable intended consequence of the aggressive monetary easing by the US Fed, I fear that we will face the historically normal unintended consequences.</p> <pre><code class="r">p1 <- asTheEconomist(xyplot(US10y - lag(US10y, 252), scales = list(y = list(rot = 0)), main = "US 10y Yield - Yearly Change")) p1 </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-3"/> </p> <p>And if we use some Vanguard US Bond Funds (vbmfx and vustx) as a proxy for the US bond market <a href="https://timelyportfolio.blogspot.com/2013/01/approaching-zero-bound-bonds.html">Approaching the Zero Bound - Bonds</a>, we see that we are now in a market different than the last 4 years.</p> <pre><code class="r">require(directlabels) require(reshape2) getSymbols("VUSTX", from = "1990-01-01") </code></pre> <pre><code>## [1] "VUSTX" </code></pre> <pre><code class="r">getSymbols("VBMFX", from = "1990-01-01") </code></pre> <pre><code>## [1] "VBMFX" </code></pre> <pre><code class="r"> bonds.tr <- merge(ROC(VUSTX[, 6], 250), ROC(VBMFX[, 6], 250)) colnames(bonds.tr) <- c("VanguardLongTsy", "VanguardTotBnd") bond.funds.melt <- melt(as.data.frame(cbind(as.Date(index(bonds.tr)), coredata(bonds.tr))), id.vars = 1) colnames(bond.funds.melt) <- c("date", "fund", "totret250") bond.funds.melt$date <- as.Date(bond.funds.melt$date) p2 <- direct.label(xyplot(bonds.tr, screens = 1, ylim = c(-0.35, 0.35), scales = list(y = list(rot = 0)), col = theEconomist.theme()$superpose.line$col, par.settings = theEconomist.theme(box = "transparent"), lattice.options = theEconomist.opts(), xlab = NULL, main = "Vanguard Bond Funds 250 Day Total Return"), list("last.points", hjust = 1, cex = 1.2)) p2 </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p> <pre><code class="r"> p3 <- asTheEconomist(horizonplot(totret250 ~ date | fund, origin = 0, horizonscale = 0.05, data = bond.funds.melt, strip = TRUE, strip.left = FALSE, par.strip.text = list(cex = 1.1), layout = c(1, 2), main = "Vanguard Bond Funds 250 Day Total Return")) p3 </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p> <pre><code class="r"> # print(p2,position=c(0,0.4,1,1),more=TRUE) # print(update(p3,main=NULL),position=c(0,0,1,0.5)) </code></pre> <h2>Comparison to Japan</h2> <p>For some reference, let's look at a country getting quite a bit of attention lately in the press. We can add US yields to my favorite chart from <a href="https://timelyportfolio.blogspot.com/2013/05/japan-jgb-yieldsmore-lattice-charts.html">Japan - JGB Yields–More Lattice Charts</a>. Most of the difference is in the short end of the curve where the US is still near the minimum since 2012 while Japan is near the max out to 7 years.</p> <pre><code class="r">url <- "https://www.mof.go.jp/english/jgbs/reference/interest_rate/" filenames <- paste("jgbcme",c("","_2010","_2000-2009","_1990-1999","_1980-1989","_1974-1979"),".csv",sep="") #load all data and combine into one jgb data.frame jgb <- read.csv(paste(url,filenames[1],sep=""),stringsAsFactors=FALSE) for (i in 2:length(filenames)) { jgb <- rbind(jgb,read.csv(paste(url,"/historical/",filenames[i],sep=""),stringsAsFactors=FALSE)) } #now clean up the jgb data.frame to make a jgb xts jgb.xts <- as.xts(data.matrix(jgb[,2:NCOL(jgb)]),order.by=as.Date(jgb[,1])) colnames(jgb.xts) <- paste0(gsub("X","JGB",colnames(jgb.xts))) #get Yen from the Fed #getSymbols("DEXJPUS",src="FRED") xtsMelt <- function(data) { require(reshape2) #translate xts to time series to json with date and data #for this behavior will be more generic than the original #data will not be transformed, so template.rmd will be changed to reflect #convert to data frame data.df <- data.frame(cbind(format(index(data),"%Y-%m-%d"),coredata(data))) colnames(data.df)[1] = "date" data.melt <- melt(data.df,id.vars=1,stringsAsFactors=FALSE) colnames(data.melt) <- c("date","indexname","value") #remove periods from indexnames to prevent javascript confusion #these . usually come from spaces in the colnames when melted data.melt[,"indexname"] <- apply(matrix(data.melt[,"indexname"]),2,gsub,pattern="[.]",replacement="") return(data.melt) #return(df2json(na.omit(data.melt))) } jgb.melt <- xtsMelt(jgb.xts["2012::",]) jgb.melt$date <- as.Date(jgb.melt$date) jgb.melt$value <- as.numeric(jgb.melt$value) jgb.melt$indexname <- factor( jgb.melt$indexname, levels = colnames(jgb.xts) ) jgb.melt$maturity <- as.numeric( substr( jgb.melt$indexname, 4, length( jgb.melt$indexname ) - 4 ) ) jgb.melt$country <- rep( "Japan", nrow( jgb.melt )) #now get the US bonds from FRED USbondssymbols <- paste0("DGS",c(1,2,3,5,7,10,20,30)) ust.xts <- xts() for (i in 1:length( USbondssymbols ) ) { ust.xts <- merge( ust.xts, getSymbols( USbondssymbols[i], auto.assign = FALSE, src = "FRED" ) ) } ust.melt <- na.omit( xtsMelt( ust.xts["2012::",] ) ) ust.melt$date <- as.Date(ust.melt$date) ust.melt$value <- as.numeric(ust.melt$value) ust.melt$indexname <- factor( ust.melt$indexname, levels = colnames(ust.xts) ) ust.melt$maturity <- as.numeric( substr( ust.melt$indexname, 4, length( ust.melt$indexname ) - 4 ) ) ust.melt$country <- rep( "US", nrow( ust.melt )) bonds.melt <- rbind( jgb.melt, ust.melt ) p4 <- xyplot( value ~ date | maturity, groups = country, data = bonds.melt, type = "l", col = c(brewer.pal(9,"Blues")[5],brewer.pal(9,"Blues")[7]), layout = c( length( unique( bonds.melt$maturity ) ), 1 ), panel = function(x, y, subscripts, col, ...) { panel.abline( h = c( sapply( by( y, bonds.melt[subscripts,"country"], summary ), min ), sapply( by( y, bonds.melt[subscripts,"country"], summary ), max ) ), #if(!col){ col = col[1:length(unique(bonds.melt[subscripts,"country"]))] #} else col = trellis.par.get()$superpose.line$col[1:length(unique(bonds.melt[subscripts,"country"]))] ) panel.xyplot( x = x, y = y, subscripts = subscripts, col = col, ... ) panel.text( x = x[ length(unique(x)) / 2], y = mean( c( sapply( by( y, bonds.melt[subscripts,"country"], summary ), max )[1], sapply( by( y, bonds.melt[subscripts,"country"], summary ), min )[2] ) ), labels = paste0(unique(bonds.melt$maturity)[panel.number()],"y"), cex = 0.8, #font = 2, col = "black", adj = c(0.5,0.5) ) }, scales = list( x = list( draw = FALSE #tck = c(1,0), #alternating = 1, #at = min(bonds.melt$date), #labels = format(min(bonds.melt$date),"%Y") ), y = list( tck = c(1,0), lwd = c(0,1) ) ), strip = FALSE, par.settings = list(axis.line = list(col = 0)), xlab = NULL, ylab = "Yield", main = "JGB and US Yields by Maturity Since Jan 2012" ) p4 <- p4 + layer( panel.abline( h = pretty(bonds.melt$value,4), lty = 3 ) ) p4 </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p> </body> </html>